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Reliability Coefficients: 

Relationship Between True Values and Observed Scores 
 

順序カテゴリ項目尺度の信頼性係数のベイズ推定 
―真値と観測値の関係― 
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岡 本 安 晴 
 

[Abstract] A model and its associated algorithms are presented for an ordinal categorical items’ 

reliability coefficient that denotes the predictive power of a regression of observed scores on true 

values. For categorical items, reliability coefficients given with respect to the three types of 

reliability, precision, consistency, and predictive power, mutually disagree in general. The 

predictive power reliability coefficient denotes the relationship between observed scores and true 

values, and other reliability coefficients overestimate the predictive power. The algorithms 

proposed for predictive reliability were applied to hypothetical datasets, and the results show that 

they are successful. 
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1. Introduction 

 

1.1 Three Aspects of Reliability 

 

This study proposes a model and its associated estimation methods of ordinal categorical 

items’ reliability coefficient that are more appropriate than current ones, e.g. alpha coefficient. Three 

aspects of reliability have been indicated—precision, consistency, and predictive power—and corresponding 

to each, a mathematical definition is formulated (cf. Raykov & Marcoulides, 2011). The proposed method 

estimates a reliability coefficient from the perspective of predictive power. But before discussing ordinal 

categorical items, we consider continuous items, which are usually assumed. 

 When reliability is considered to denote precision, an observed score is decomposed to a true 

score and an error, and reliability coefficient 𝜌𝜌 is given by the following equation (McDonald, 1999; 

Crocker & Algina, 1986; Guilford, 1954): 



60

日本女子大学紀要  人間社会学部  第 28 号  Japan Women’s University Journal vol.28（2017）
 

 

 

𝜌𝜌 =
𝑉𝑉𝑉𝑉𝑉𝑉 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
,                                                                    (1) 

where 𝑉𝑉𝑉𝑉𝑉𝑉 ∙  denotes a variance. When an observed score 𝑋𝑋!" on item 𝑗𝑗 of person 𝑖𝑖 is given by the 

following one-factor model: 

𝑋𝑋!" = 𝑎𝑎! + 𝜆𝜆!𝐹𝐹! + 𝑒𝑒!"                                                                       (2) 

𝜌𝜌 can be given by the following equation, denoted by ω (McDonald, 1999), 

𝜔𝜔 =
𝜆𝜆!!

!!!
!

𝜆𝜆!!
!!!

!
+ 𝜓𝜓!

!!
!!!

 

where 𝑀𝑀 is the number of items, 𝑎𝑎! a constant, 𝜆𝜆! a factor loading, 𝐹𝐹 a common factor with variance 1 

of the measured attribute, and 𝑒𝑒! an error with variance 𝜓𝜓!! independent of other variables.  

From Equation 1, the popular coefficient alpha 𝛼𝛼 can be derived (McDonald, 1999; Crocker 

& Algina, 1986): 

𝛼𝛼 =
𝑀𝑀

𝑀𝑀 − 1
1 −

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋!"!
!!!

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋!
,     𝑋𝑋! = 𝑋𝑋!"

!

!!!

 . 

As we know, 𝛼𝛼 is equal to 𝜔𝜔 when all 𝜆𝜆!s have the same value. Some explain that 𝛼𝛼 is a lower bound 

of the reliability coefficient’s estimates (Crocker & Algina, 1986; Fife, Mendoza & Terry, 2012; Furr & 

Bacharach, 2008; McDonald, 1999). The greatest lower bound (𝑔𝑔𝑔𝑔𝑔𝑔) is proposed as the reliability 

coefficient more adequate than 𝛼𝛼 as a lower-bound estimate (Jackson & Agunwamba, 1977; Sijtsma, 

2009; Ten Berge & Sočan, 2004). It is shown that α ≤ 𝑔𝑔𝑔𝑔𝑔𝑔. However, α might be greater than the 

reliability coefficient’s true value (Yang & Green, 2011), and simulations that obtained 𝛼𝛼s greater than 

true reliability coefficients are reported (Okamoto, 2013; Yang & Green, 2010). 

When reliability is considered to denote consistency, the correlation coefficient between 

scores on parallel test forms is used (Crocker & Algina, 1986; Cronbach, 1961; Guttman, 1945). Two test 

forms 𝑋𝑋 and 𝑋𝑋′ are parallel when they are represented as follows: 

𝑋𝑋 = 𝑇𝑇 + 𝐸𝐸, and     𝑋𝑋! = 𝑇𝑇 + 𝐸𝐸!, 

where 𝑇𝑇 is a shared true score, and 𝐸𝐸 and 𝐸𝐸′ are errors with the same variances and independent of 

each other and 𝑇𝑇. In this case, reliability coefficient 𝜌𝜌!!! is given by 

𝜌𝜌!!! = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋, 𝑋𝑋′ , 

where 𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋, 𝑋𝑋′  denotes the correlation coefficient of 𝑋𝑋 and 𝑋𝑋′. As we know, 𝜌𝜌!!!  is equal to 𝜌𝜌. 

Reliability is also considered to denote predictive power, and a regression model is used. Lord 

and Novick (1968) regress an observed score on a true score. Raykov and Marcoulides (2011) emphasize 
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reliability’s predictive power, saying “Reliability bears a distinctive relationship to the predictive power 

with which one can predict observed score from true score (p. 139).” They discuss two types of regression 

models: regression of an observed score on a true score and regression of a true score on an observed score. 

King, Rosopa, and Minium (2011) explain interchangeability between dependent and predictor variables. 

In both cases, strength of relationship, i.e., predictive power, is denoted by the coefficient of determination 

𝑅𝑅!-index, which is given by 

𝑅𝑅! = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 !. 

As is known, 

𝑅𝑅! = 𝜌𝜌 . 

 

1.2. Ordinal Categorical Items 

 

Traditionally, reliability coefficients are discussed for continuous items, and reliability 

coefficients defined for continuous items have been applied to ordinal categorical items. However, models 

for ordinal categorical items have been also proposed. Reliability for ordinal categorical items can also be 

discussed from the three perspectives. To clarify the discussion, a basic model of ordinal categorical items 

is needed. It is known by various names, e.g., a nonlinear structural equation model (SEM) (Green & Yang, 

2009), an ordinal probit regression (Okamoto, 2013), or a Thurstonian item-response theory (IRT) model 

(Brown & Maydeu-Olivares, 2013). Raykov, Dimitrov, and Asparoukov (2010) indicate the equivalence of 

these models and the two-parameter normal ogive model in IRT. The models set in this study are as 

follows. 

Let 𝑈𝑈!" be an unobserved continuous value on item 𝑗𝑗 of person 𝑖𝑖. A single factor model for 

𝑈𝑈!", the same as that for 𝑋𝑋!" (Equation 2), is set as follows: 

𝑈𝑈!" = 𝜇𝜇! + 𝜆𝜆!𝐹𝐹! + 𝐸𝐸!",                                                                          (3) 

where 𝐹𝐹! is a common factor with the standard normal distribution of person 𝑖𝑖, 𝜆𝜆! is a factor loading, 𝜇𝜇! 

is a position parameter, and 𝐸𝐸!" is an error that has normal distribution with mean 0 and variance 𝜓𝜓!!. 

Error terms 𝐸𝐸!"s are independent of each other and 𝐹𝐹!. The observed response 𝑌𝑌!" on item 𝑗𝑗, based on 

𝑈𝑈!", is made according to the rule 

𝑌𝑌!" = 𝑘𝑘,        if 𝐶𝐶!!! ≤ 𝑈𝑈!" < 𝐶𝐶!,                                                             (4) 

where 𝐶𝐶!s are category boundaries for response 𝑌𝑌!", and 

−∞ = 𝐶𝐶! < 𝐶𝐶! < ⋯ < 𝐶𝐶!!! < 𝐶𝐶! = +∞ . 

An observed score 𝑌𝑌! can be obtained as the sum of 𝑌𝑌!"s, that is, 
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𝑌𝑌! = 𝑌𝑌!"

!

!!!

 .                                                                                (5) 

In the case of ordinal categorical items, an observed continuous variable 𝑋𝑋!"  of Model 2 becomes 

unobserved and is denoted by 𝑈𝑈!". Unobserved variable 𝑈𝑈!" is categorized by 𝑌𝑌!", which is observed. 

 Under the model shown above for ordinal categorical items, reliability coefficients can be 

discussed as follows. 

 

1.2.1. Current reliability coefficients for categorical items 

 

 Reliability coefficient 𝜌𝜌!, which denotes a test’s precision as coefficient 𝜔𝜔 for underlying 

latent variables 𝑈𝑈!"s, is proposed by Okamoto (2013). That is, 𝜌𝜌! is given by 

𝜌𝜌! =
𝜆𝜆!!

!!!
!

𝜆𝜆!!
!!!

!
+ 𝜓𝜓!

!!
!!!

.                                                                     (6) 

Parameters 𝜆𝜆!s and 𝜓𝜓!s are estimated based on samples from Markov chain Monte Carlo (MCMC), which 

is a popular method in Bayesian analysis. 𝜌𝜌! denotes latent variables’ precision and is independent of 

categories used, so it can be considered an intrinsic character of items. But, 𝜌𝜌! does not denote precision 

of the observed sum of ordinal categorical items. 

 Reliability coefficient, explained to denote precision of ordinal categorical items, is proposed 

for binary items (Dimitrov, 2003; Raykov, Dimitrov, & Asparouhov, 2010). A binary score 𝑌𝑌!"  is 

decomposed as a sum of a true value 𝜏𝜏!" and an error 𝑒𝑒!", i.e., 

𝑌𝑌!" = 𝜏𝜏!" + 𝑒𝑒!" .                                                                          (7) 

When we interpret Equation 7 as a sum of a true value and an error, the meaning of “true value” is 

ambiguous. A score on a binary item takes one of two values, 1 or 2, for example. Which value is the true 

one? Dimitrov (2003) derives the true value as 1 + 𝑃𝑃! 𝜃𝜃! , where 𝑃𝑃! 𝜃𝜃!  denotes probability of response 

𝑌𝑌!" = 2 on item 𝑗𝑗 of person 𝑖𝑖 with a trait of score 𝜃𝜃!. (He sets a score on a binary item as 0 or 1.) Hence, 

1 < 𝜏𝜏!" = 𝑃𝑃! 𝜃𝜃! < 2 . 

However, a score on binary items is 1 or 2, so true value 𝜏𝜏!" should also be 1 or 2, i.e., one of the binary 

responses. Hence, the concept of true value 𝜏𝜏!" in Model 7 is contradictory, or at least ambiguous, 

although taking formal operation of expectation of 𝜏𝜏!" obscures the contradiction. When we measure a 

concept, we want to know its strength, the true value of which is reflected by 𝐹𝐹! of Equation 3, so 

precision of observed scores should be considered with respect to 𝐹𝐹! of Equation 3. 

 Coefficient alpha 𝛼𝛼 is also calculated for ordinal categorical items as follows: 
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𝛼𝛼 =
𝑀𝑀

𝑀𝑀 − 1
1 −

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌!"!
!!!

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌!
, 

which is obtained by replacing 𝑋𝑋!"s for continuous items with 𝑌𝑌!"s for ordinal categorical items. 

 When considering a test’s consistency, the correlation coefficient of parallel test forms is 

used as a reliability coefficient (Green & Young, 2009). A parallel test 𝑌𝑌! of 𝑌𝑌 is represented as follows: 

𝑈𝑈!"! = 𝜇𝜇! + 𝜆𝜆!𝐹𝐹! + 𝐸𝐸!"!                                                                          (8) 

𝑌𝑌!"! = 𝑘𝑘,    if  𝐶𝐶!!! ≤ 𝑈𝑈!"! < 𝐶𝐶! ,                                                                  (9) 

𝑌𝑌!! = 𝑌𝑌!"!
!

!!!

 ,                                                                                 (10) 

where Equations 8, 9, and 10 correspond to Equations 3, 4, and 5, respectively. The same symbols 𝜇𝜇!, 𝜆𝜆!, 

𝐹𝐹!, and 𝐶𝐶! denote shared values, respectively. Parallel tests differ only in error terms independent of other 

variables and have the same variance as corresponding error terms. The model for parallel tests can be 

applied to the test-retest method. In this study, the reliability coefficient defined by the correlation 

coefficient of parallel tests 𝑌𝑌 and 𝑌𝑌′ is denoted by 𝜌𝜌!!!: 

𝜌𝜌!!! = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌!, 𝑌𝑌!!  . 

 

1.2.2. Proposed predictive reliability coefficient 

 

 Predictive power for continuous items is denoted by the 𝑅𝑅!-index of a regression equation of 

observed scores on true scores, and is equal to 𝜌𝜌. For ordinal categorical items, an observed score is 𝑌𝑌!, 

and a true score is 𝐹𝐹!, which reflects the strength of an attribute of a concept to be measured. Hence, the 

regression equation is represented as follows: 

𝑌𝑌! = 𝑎𝑎 + 𝑏𝑏𝐹𝐹! + 𝑒𝑒                                                                         (11) 

Values of 𝑎𝑎 and 𝑏𝑏 are determined by the least-squares criterion. As is known, 𝑅𝑅!-index is given by the 

squared correlation of 𝑌𝑌! and 𝐹𝐹!, so the reliability coefficient as predictive power, denoted by 𝜌𝜌!"# in 

this study, is given by 

𝜌𝜌!"# = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌!, 𝐹𝐹! ! . 

Although Raykov and Marcoulides (2011) emphasized distinctive relationship of reliability and the 

predictive power, they did not give an explicit definition of reliability for categorical items from the point 

of view of predictive power. As an approximate method, they proposed parceling of categorical items. In 

contrast to their approximate method, 𝜌𝜌!"# proposed above is defined explicitly as the predictive power of 

Regression 11. Equations to calculate 𝜌𝜌!"# are given in the Appendix. 
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 Reliability coefficient 𝜌𝜌! also denotes the predictive power of a regression of 𝑈𝑈! on 𝐹𝐹!, i.e., 

𝜌𝜌! is equal to 𝑅𝑅!-index of regression equation 

𝑈𝑈! = 𝑎𝑎! + 𝑏𝑏!𝐹𝐹! + 𝑒𝑒!,    𝑈𝑈! = 𝑈𝑈!"

!

!!!

 , 

where regression coefficients 𝑎𝑎! and 𝑏𝑏! are determined by the least-squares criterion. 

 Values of 𝜌𝜌! , 𝜌𝜌!!! , 𝛼𝛼 , and 𝜌𝜌!"#  are determined from parameters 𝜇𝜇! s, 𝜆𝜆! s, and 𝜓𝜓! s. 

Reliability coefficient 𝜌𝜌! is given by Equation 6, and 𝜌𝜌!!! , 𝛼𝛼, and 𝜌𝜌!!" are given by equations listed in 

the Appendix. 

 Comparison of reliability coefficients for ordinal categorical items was done for concrete 

values of parameters and is reported in the next section. 

 

1.3. Comparison of Reliability Coefficients for Ordinal Categorical Items 

 

Given the values of parameters 𝜆𝜆!s and 𝜓𝜓!s, reliability coefficient 𝜌𝜌! can be calculated by 

Equation 6. Other coefficients—𝜌𝜌!"#, 𝜌𝜌!!! , and 𝛼𝛼—can be calculated using equations listed in the Appendix 

from values of 𝜇𝜇!s, 𝜆𝜆!s, 𝜓𝜓!s, and 𝐶𝐶!s. For the following combination of parameter values, comparisons 

of reliability coefficients 𝜌𝜌!"#, 𝜌𝜌!, 𝜌𝜌!!! , and 𝛼𝛼 were conducted. Effects of the number of categories 𝐾𝐾 

and number of items 𝑀𝑀 on reliability coefficients were investigated with parameter values 𝜆𝜆! = 0.7, 

𝜓𝜓!! = 1 − 𝜆𝜆!! (i.e., parallel items [McDonald, 1999]), and 𝐶𝐶! = 0 for 𝐾𝐾 = 2; 𝐶𝐶! = −0.2, 𝐶𝐶! = 0.2 for 

𝐾𝐾 = 3 ; 𝐶𝐶! = −1.5 + 0.5𝑘𝑘 , 𝑘𝑘 = 1,⋯ ,5  for 𝐾𝐾 = 6 ; 𝐶𝐶! = −1.875 + 0.375k , 𝑘𝑘 = 1,⋯ ,9  for 𝐾𝐾 = 10 . 

Parameters 𝜇𝜇!s are set at 0 for all combinations. Figure 1 shows the values of reliability coefficients 𝜌𝜌!, 

𝜌𝜌!!! , 𝛼𝛼, and 𝜌𝜌!"# for number of items 𝑀𝑀 = 5 (a) and for 𝑀𝑀 = 10 (b). Reliability coefficient 𝜌𝜌! is 

constant over the number of categories 𝐾𝐾, because 𝜌𝜌! is a reliability coefficient for latent variables 𝑈𝑈!"s 

and is not affected by category boundaries 𝐶𝐶!s (Equation 6). On the other hand, 𝜌𝜌!"# varies with 𝐾𝐾. 

Reliability coefficient 𝜌𝜌!"# is substantially lower than 𝜌𝜌! for small 𝐾𝐾; this means that the amount of lost 

information about 𝐹𝐹! contained in 𝑈𝑈!" increases as the number of categories decreases. The difference 

𝜌𝜌! − 𝜌𝜌!"# can be interpreted as the amount of information lost by discretization of the continuous variable 

𝑈𝑈!" to the ordinal categorical variable 𝑌𝑌!" (Equation 4). Figure 1 shows that for the number of categories 

𝐾𝐾 = 10, this loss of information becomes negligible, that is, 𝑌𝑌!" s with 𝐾𝐾 = 10 can be considered 

approximately continuous items. Over the range of K, from 2 to 10, reliability coefficients 𝜌𝜌!!!  and 𝛼𝛼 

are between 𝜌𝜌! and 𝜌𝜌!"#. They underestimate reliability 𝜌𝜌! for latent variables 𝑈𝑈!"s, and overestimate 

reliability coefficient 𝜌𝜌!"#, which represents the actual relation’s strength between a true value 𝐹𝐹! and an 

observed value 𝑌𝑌!. Other simulations by the author showed a similar tendency. Reliability coefficient 𝜌𝜌!"# 

denotes the strength of relation between true values and observed scores, and reliability coefficients other 

than 𝜌𝜌!"! tend to overestimate 𝜌𝜌!"#. Hence, estimating 𝜌𝜌!"# to know the strength of relation between 

true values and observed scores is worthwhile. The next section proposes Bayesian methods of estimation 

for reliability coefficient 𝜌𝜌!"#. 
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Figure 1. Reliability coefficients 𝜌𝜌!, 𝜌𝜌!!! , 𝛼𝛼, and 𝜌𝜌!"#. Number of items 𝑀𝑀 is 5 (a) or 10 (b). Factor 

loadings 𝜆𝜆!s are 0.7, and variances of errors 𝜓𝜓!!s are 1 − 𝜆𝜆!!. Category boundary is 𝐶𝐶! = 0 for number of 

categories 𝐾𝐾 = 2 , and category boundaries are 𝐶𝐶! = −0.2 , and 𝐶𝐶! = 0.2  for 𝐾𝐾 = 3 ; 𝐶𝐶! = −1.5 +

0.5𝑘𝑘, 𝑘𝑘 = 1,⋯ ,5 for 𝐾𝐾 = 6; or 𝐶𝐶! = −1.875 + 0.375𝑘𝑘, 𝑘𝑘 = 1,⋯ ,9 for 𝐾𝐾 = 10. All 𝜇𝜇!s are 0. 

 

 

2. Bayesian Algorithms 

 

Because of differences in constraints set to identify the values of parameters between binary 

items and items with more than two categories, algorithms are presented separately for each type of item. 

 

 2.1. Items with More than Two Categories 

 

Set 

𝑭𝑭 = 𝐹𝐹!, , 𝐹𝐹! , 𝝁𝝁 = 𝜇𝜇!,⋯ , 𝜇𝜇! , 𝝀𝝀 = 𝜆𝜆!,⋯ , 𝜆𝜆! ,𝝍𝝍 = 𝜓𝜓!,⋯ , 𝜓𝜓! , 𝑪𝑪 = 𝐶𝐶!,⋯ , 𝐶𝐶! , 

where 𝑁𝑁 is the number of persons. Corresponding to these parameters, the probability of response 

𝑌𝑌!" = 𝑘𝑘 of person 𝑖𝑖 on item 𝑗𝑗 is given by 

𝑃𝑃 𝑌𝑌!" = 𝑘𝑘 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪 = 𝑃𝑃 𝐶𝐶!!! ≤ 𝑈𝑈!" < 𝐶𝐶! 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪  

= 𝛷𝛷
𝐶𝐶! − 𝜇𝜇! + 𝜆𝜆!𝐹𝐹!

𝜓𝜓!
− 𝛷𝛷

𝐶𝐶!!! − 𝜇𝜇! + 𝜆𝜆!𝐹𝐹!
𝜓𝜓!

                                       (12) 

 Set 

𝒀𝒀 = 𝑌𝑌!!, 𝑌𝑌!",⋯ , 𝑌𝑌!" , 

where 𝑁𝑁 is the number of persons. 

Under the independence assumption, we have the following likelihood function: 
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𝐿𝐿 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪 𝒀𝒀 = 𝑃𝑃 𝑌𝑌!" 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪
!

!!!

!

!!!

. 

Hence, the posterior probability function is given by 

𝑃𝑃 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪 𝒀𝒀 ∝ 𝑃𝑃! 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪 𝑃𝑃 𝑌𝑌!" 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪
!

!!!

!

!!!

 ,                           (13) 

where 𝑃𝑃! 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪  is a prior probability function and is given in this study by 

𝑃𝑃! 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪 = 𝑃𝑃! 𝑭𝑭 𝑃𝑃! 𝝁𝝁 𝑃𝑃! 𝝀𝝀 𝑃𝑃! 𝝍𝝍 𝑃𝑃! 𝑪𝑪   

𝑃𝑃! 𝑭𝑭 = 𝑃𝑃 𝐹𝐹!

!

!!!

, 𝑃𝑃! 𝝁𝝁 = 𝑃𝑃 𝜇𝜇!

!

!!!

, 𝑃𝑃! 𝝀𝝀 = 𝑃𝑃 𝜇𝜇!

!

!!!

, 𝑃𝑃! 𝝍𝝍 = 𝑃𝑃 𝜓𝜓!

!

!!!

. 

The prior distribution for 𝐹𝐹! is the standard normal distribution, and prior distributions of 𝜇𝜇!, 𝜆𝜆! and 𝜓𝜓! 

are chosen similarly to those of Okamoto (2013), i.e., uniform distributions on sufficiently large regions 

with restrictions 𝜆𝜆! > 0 and 𝜓𝜓! > 0. Prior distribution 𝑃𝑃! 𝑪𝑪  for 𝐶𝐶!s is set to be uniformly distributed 

on sufficiently large regions under the constraint 

𝐶𝐶! < ⋯ < 𝐶𝐶!!!. 

That is, 

P 𝐶𝐶!,⋯ , 𝐶𝐶!!! = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐      𝑖𝑖𝑖𝑖 𝐶𝐶! < ⋯ < 𝐶𝐶!!!
0                   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 Equation 12 implies that an origin and a unit of the scale are arbitrary. For the origin and the 

unit, Okamoto (2013) sets 

𝐶𝐶! = −1 and 𝐶𝐶!!! = 1,                              (14) 

to estimate 𝜌𝜌!, because Equation 6 is invariant when units are rescaled by the same factor among items or 

origins are shifted, not necessarily by the same distance for each item. To identify parameter values, the 

origin and unit are chosen by setting Constraint 14. Constraint 14 assumes that category boundaries are 

common among items and under this assumption reliability coefficient 𝜌𝜌! is given by Equation 6. 

 Under Constraint 14, 𝜇𝜇! can be interpreted to correspond to the modal category of item 𝑗𝑗. 

As 𝜇𝜇!  becomes larger from a value smaller than 𝐶𝐶! = −1  to a value larger than 𝐶𝐶!!! = 1 , the 

distribution of categorical responses 𝑌𝑌!"s shifts from the left to the right. 

 Point estimates and posterior distributions of reliability coefficients can be estimated by the 

following Algorithm 1. 

Algorithm 1 (Items with more than two categories: The program is available from the author.) 

Step 1. Generate 𝑁𝑁!"#$ samples from the posterior distribution (Equation 13) by Markov chain Monte 
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Carlo (MCMC). Denote the sample at time 𝑡𝑡 by 𝝁𝝁(!), 𝝀𝝀(!), 𝝍𝝍(!), and 𝑪𝑪(!). The value of 𝑁𝑁!"#$ 

should be sufficiently large so that the point estimates of 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, and 𝑪𝑪 are stable. In the program 

by the author of this study, 𝑁𝑁!"#$ is set at 12,000. 

Step 2. Calculate means of 𝑁𝑁!"#$ samples generated in Step 1 as point estimates of parameters 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 

and 𝑪𝑪. Estimated values are denoted by parameters with carets above, e.g., 𝜇𝜇!, 𝜆𝜆!, 𝜓𝜓!, and 𝐶𝐶!. 

Step 3. Calculate 𝜌𝜌!"# using the point estimates of parameters. Other reliability coefficients, e.g., 𝜌𝜌!, 

𝜌𝜌!!! , or 𝛼𝛼, can also be calculated from the parameters’ point estimates. Equations to calculate 

reliability coefficients from parameters are listed in the Appendix. 

 

If you want to obtain reliability coefficients’ posterior distributions, go to the next step. 

 

Step 4. As the number of samples is too large, calculation of the posterior distribution of reliability 

coefficient 𝜌𝜌!"# requires too much time. To reduce computation time, randomly select 𝑁𝑁!"# (< 

𝑁𝑁!"#$) samples from the samples generated in Step 1. The author’s program sets 𝑁𝑁!"# =1,000. 

Denote the 𝑠𝑠th sample of 𝑁𝑁!"# samples from 𝑁𝑁!"#$ samples by 𝝁𝝁(! !"#), 𝝀𝝀(! !"#), 𝝍𝝍(! !"#), and 

𝑪𝑪(! !"#). 

Step 5. Calculate the 𝑠𝑠th sample of reliability coefficient 𝜌𝜌!"#
(!)  as that determined by the 𝑠𝑠th sample of 

parameters 𝝁𝝁(! !"#), 𝝀𝝀(! !"#), 𝝍𝝍(! !"#), and 𝑪𝑪(! !"#). If you are also interested in other reliability 

coefficients, e.g., 𝜌𝜌!!!
(!) , 𝛼𝛼(!), or 𝜌𝜌!

(!), they can also be calculated. 

Step 6. Estimate the reliability coefficient’s posterior distribution by samples 𝜌𝜌!"#
(!) s. Posterior distributions 

of other reliability coefficients can also be estimated from samples 𝜌𝜌!!!
(!) s, 𝛼𝛼(!)s, or 𝜌𝜌!

(!)s. 

 

 The sampling method in Step 1 and used in the author’s program is called 

Metropolis-within-Gibbs (Robert & Casella, 2010a, 2010b) or the component-wise version of the 

Metropolis-Hastings algorithm (Gamerman & Lopes, 2006) and is essentially the same as that by Okamoto 

(2013). Hence, details of MCMC algorithms used in this study are omitted, but see Okamoto (2013) for 

details. 

 

2.2 Binary Items 

 

For binary items, Constraint 14 cannot be employed, because a single category boundary 𝐶𝐶! 

bisects the continuum of the latent variable 𝑈𝑈!". Okamoto (2013) uses the constraint 𝐶𝐶! = 0 under the 

restriction of essentially tau-equivalent items, i.e., 

𝜆𝜆! = ⋯ = 𝜆𝜆! = 1.                                                          (15) 

But, Restriction 15 is not needed to estimate 𝜌𝜌!"#, 𝜌𝜌!!! , or 𝛼𝛼, because these values can be calculated 

from probability 𝑃𝑃 𝑌𝑌!" = 𝑘𝑘 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪  (Equation 12) using equations listed in the Appendix. In the case 
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of binary items, Equation 12 becomes 

𝑃𝑃 𝑌𝑌!" = 1 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪 = 𝛷𝛷
𝐶𝐶! − 𝜇𝜇! + 𝜆𝜆!𝐹𝐹!

𝜓𝜓!
. 

Because of arbitrariness of origin, set  

𝐶𝐶! = 0, 

then we have 

𝑃𝑃 𝑌𝑌!" = 1 𝑭𝑭, 𝝁𝝁, 𝝀𝝀, 𝝍𝝍, 𝑪𝑪 = 𝛷𝛷
− 𝜇𝜇! + 𝜆𝜆!𝐹𝐹!

𝜓𝜓!
= 𝛷𝛷 −

𝜇𝜇!
𝜓𝜓!
+
𝜆𝜆!
𝜓𝜓!
𝐹𝐹! . 

 Put 

𝜇𝜇!" =
𝜇𝜇!
𝜓𝜓!

  and  𝜆𝜆!" =
𝜆𝜆!
𝜓𝜓!

 , 

and then probabilities for binary items can be given by parameters 𝜇𝜇!"s and 𝜆𝜆!"s, instead of 𝜇𝜇!s, 𝜆𝜆!s, and 

𝜓𝜓!s. That is, for binary items, the unit for each item 𝑗𝑗 is set so that 𝜓𝜓!"! = 𝑉𝑉𝑉𝑉𝑉𝑉 𝐸𝐸! = 1, and the origin is 

set so that 𝐶𝐶! = 0. Hence, we can estimate reliability coefficients 𝜌𝜌!"#, 𝜌𝜌!!! , or 𝛼𝛼 for binary items, 

which do not need to satisfy the condition of essentially tau-equivalent items. But, reliability coefficient 

𝜌𝜌! cannot be calculated from these parameters because item 𝑗𝑗s do not have the same common unit. 

 For binary items, the stochastic model can be written as follows: 

 Set 

𝑭𝑭 = 𝐹𝐹!, , 𝐹𝐹! , 𝝁𝝁! = 𝜇𝜇!!,⋯ , 𝜇𝜇!" , 𝝀𝝀! = 𝜆𝜆!!,⋯ , 𝜆𝜆!" , 𝒀𝒀 = 𝑌𝑌!!, 𝑌𝑌!",⋯ , 𝑌𝑌!" . 

 Probabilities of 𝑌𝑌!" are given as follows, 

𝑃𝑃 𝑌𝑌!" = 1  𝑭𝑭, 𝝁𝝁!, 𝝀𝝀! = Φ − 𝜇𝜇!" + 𝜆𝜆!"𝐹𝐹!  

and 

𝑃𝑃 𝑌𝑌!" = 2  𝑭𝑭, 𝝁𝝁!, 𝝀𝝀! = 1 − 𝑃𝑃 𝑌𝑌!" = 1  𝑭𝑭, 𝝁𝝁!, 𝝀𝝀! . 

Then, we have the following likelihood function: 

𝐿𝐿 𝑭𝑭, 𝝁𝝁!, 𝝀𝝀! 𝒀𝒀 = 𝑃𝑃 𝑌𝑌!"  𝑭𝑭, 𝝁𝝁!, 𝝀𝝀!

!

!!!

!

!!!

. 

The posterior distribution function is given by 
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𝑃𝑃 𝑭𝑭, 𝝁𝝁!, 𝝀𝝀! 𝒀𝒀 ∝ 𝑃𝑃!! 𝑭𝑭, 𝝁𝝁!, 𝝀𝝀! 𝑃𝑃 𝑌𝑌!"  𝑭𝑭, 𝝁𝝁!, 𝝀𝝀!

!

!!!

!

!!!

.             (16) 

The prior distribution function 𝑃𝑃!! 𝑭𝑭, 𝝁𝝁!, 𝝀𝝀!  is given in this study by 

𝑃𝑃!! 𝑭𝑭, 𝝁𝝁!, 𝝀𝝀! = 𝑃𝑃!! 𝑭𝑭 𝑃𝑃!! 𝝁𝝁! 𝑃𝑃!! 𝝀𝝀! , 

𝑃𝑃!! 𝑭𝑭 = 𝑃𝑃 𝐹𝐹!

!

!!!

, 𝑃𝑃!! 𝝁𝝁! = 𝑃𝑃 𝜇𝜇!"

!

!!!

, 𝑃𝑃!! 𝝀𝝀! = 𝑃𝑃 𝜆𝜆!"

!

!!!

. 

The prior distribution for 𝐹𝐹! is the standard normal distribution, and prior distributions of 𝜇𝜇!" and 𝜆𝜆!" are 

uniform distributions on sufficiently large regions with restriction 𝜆𝜆!" > 0. 

 Point estimates and reliability coefficients’ posterior distributions can be estimated by the 

following Algorithm 2. 

Algorithm 2 (Binary items: The program is available from the author.). 

Step 1. Generate 𝑁𝑁!"#$ samples from the posterior distribution (Equation 16) by Markov chain Monte 

Carlo (MCMC). Denote the sample at time 𝑡𝑡 by 𝝁𝝁!
(!) and 𝝀𝝀!

(!). The value of 𝑁𝑁!"#$ should be 

sufficiently large so that the point estimates of 𝝁𝝁! and 𝝀𝝀! are stable. In the author’s program, 

𝑁𝑁!"#$ is set at 12,000. 

Step 2. Calculate means of 𝑁𝑁!"#$ samples generated in Step 1 as point estimates of parameters  𝝁𝝁! and 

𝝀𝝀!. Estimated values are denoted by parameters with carets above, e.g., 𝜇𝜇!" and 𝜆𝜆!". 

Step 3. Calculate 𝜌𝜌!!" using point estimates of parameters. Other reliability coefficients, e.g., 𝜌𝜌!, 𝜌𝜌!!! , 

or 𝛼𝛼, can also be calculated from parameters’ point estimates. Equations to calculate reliability 

coefficients from parameters are listed in the Appendix. In applying equations in the Appendix to 

binary items, 𝜇𝜇!, 𝜆𝜆!, 𝜓𝜓!, and 𝐶𝐶! are replaced by 𝜇𝜇!", 𝜆𝜆!", 1, and 0, respectively. 

 

If you want to obtain reliability coefficients’ posterior distributions, go to the next step. 

 

Step 4. The number of samples is too large, so calculation of the posterior distribution of reliability 

coefficient 𝜌𝜌!"# requires too much time. To reduce computation time, randomly select 𝑁𝑁!"# (< 

𝑁𝑁!"#$) samples from the samples generated in Step 1. The author’s program sets 𝑁𝑁!"# =1,000. 

Denote the 𝑠𝑠th sample of 𝑁𝑁!"# samples from 𝑁𝑁!"#$ samples by 𝝁𝝁!
(! !!") and 𝝀𝝀!

(! !"#). 

Step 5. Calculate the 𝑠𝑠th sample of reliability coefficient 𝜌𝜌!"#
(!)  as that determined by the 𝑠𝑠th sample of 

parameters 𝝁𝝁!
(! !"#) and 𝝀𝝀!

(! !"#). If you are also interested in other reliability coefficients, e.g., 

𝜌𝜌!!!
(!) , 𝛼𝛼(!), or 𝜌𝜌!

(!), they can be calculated. 

Step 6. Estimate the reliability coefficient’s posterior distribution by samples 𝜌𝜌!"#
(!) s. Posterior distributions 

of other reliability coefficients can also be estimated from samples 𝜌𝜌!!!
(!) s and 𝛼𝛼(!)s. 

 

 The sampling method in Step 1 and used in the author’s program is essentially the same as 
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that used by Okamoto (2013). Hence, details of MCMC algorithms used in this study are omitted, but see 

Okamoto (2013) for details. 

Examples of applications of the above algorithms to hypothetical datasets are presented in the 

next section. 

 

3. Applications 

 

 Algorithms 1 and 2 were applied to hypothetical datasets of items with six categories (Table 

1) and binary items (Table 2), respectively. 

 

TABLE 1 

A hypothetical dataset of 500 people on 10 items with 6 categories. The dataset was generated using 

Equations 3 and 4 with parameter values 𝜇𝜇! = ⋯ = 𝜇𝜇! = 0.1 , 𝜇𝜇! = ⋯ = 𝜇𝜇!" = −0.1 , 𝜆𝜆! = 𝜆𝜆!!! =

0.525 + 0.075𝑗𝑗 , 𝜓𝜓!! = 1 − 𝜆𝜆!! , 𝐶𝐶! = −1.5 , 𝐶𝐶! = −0.5 , 𝐶𝐶! = 0 , 𝐶𝐶! = 0.5 , 𝐶𝐶! = 1.5 . The complete 

dataset is available from the author. 

People Itm1 Itm2 Itm3 Itm4 Itm5 Itm6 Itm7 Itm8 Itm9 Itm10 

1 2 4 4 2 2 5 4 1 3 3 

2 2 5 3 2 3 3 1 2 4 3 

3 6 4 3 2 2 5 4 3 2 3 

4 2 2 2 2 2 1 1 2 2 2 

5 5 5 5 4 6 5 6 5 6 6 

• • • • • • • • • • • 

• • • • • • • • • • • 

• • • • • • • • • • • 

496 2 2 2 2 2 1 2 1 1 1 

497 2 5 2 3 2 4 1 3 2 3 

498 2 2 1 2 2 1 2 1 2 2 

499 4 3 3 2 2 2 4 2 1 1 

500 4 2 2 2 3 2 1 2 2 2 
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TABLE 2 

A hypothetical dataset of 500 people on 10 binary items. The dataset was generated using Equations 3 and 

4 with parameter values 𝜇𝜇! = ⋯ = 𝜇𝜇! = 0.1 , 𝜇𝜇! = ⋯ = 𝜇𝜇!" = −0.1 , 𝜆𝜆! = 𝜆𝜆!!! = 0.525 + 0.075𝑗𝑗 , 

𝜓𝜓!! = 1 − 𝜆𝜆!!, 𝐶𝐶! = 0. The complete dataset is available from the author 

 

People Itm1 Itm2 Itm3 Itm4 Itm5 Itm6 Itm7 Itm8 Itm9 Itm10 

1 1 2 2 1 1 2 2 1 1 1 

2  1 2 1 1 1 1 1 1 2 1 

3 2 2 1 1 1 2 2 1 1 1 

4 1 1 1 1 1 1 1 1 1 1 

5 2 2 2 2 2 2 2 2 2 2 

• • • • • • • • • • • 

• • • • • • • • • • • 

• • • • • • • • • • • 

496 1 1 1 1 1 1 1 1 1 1 

497 1 2 1 1 1 2 1 1 1 1 

498 1 1 1 1 1 1 1 1 1 1 

499 2 1 1 1 1 1 2 1 1 1 

500 2 1 1 1 1 1 1 1 1 1 

 

 

 The Table 1 dataset contains responses by 500 persons to 10 items with 6 categories. Point 

estimates in Step 2 of parameters for the Table 1 dataset were as follows: 

𝜇𝜇! ≈ 0.033 , 𝜇𝜇! ≈ 0.060 , 𝜇𝜇! ≈ 0.074 , 𝜇𝜇! ≈ 0.054 , 𝜇𝜇! ≈ 0.023 , 𝜇𝜇! ≈ −0.107 , 𝜇𝜇! ≈ −0.082 , 

𝜇𝜇! ≈ −.084 , 𝜇𝜇! ≈ −0.078 , 𝜇𝜇!" ≈ −0.108 , 𝜆𝜆! ≈ 0.377 , 𝜆𝜆! ≈ 0.471 , 𝜆𝜆! ≈ 0.498 , 𝜆𝜆! ≈ 0.530 , 

𝜆𝜆! ≈ 0.590, 𝜆𝜆! ≈ 0.410, 𝜆𝜆! ≈ 0.414, 𝜆𝜆! ≈ 0.485, 𝜆𝜆! ≈ 0.549, 𝜆𝜆!" ≈ 0.586, 

𝜓𝜓! ≈ 0.510 , 𝜓𝜓! ≈ 0.465 , 𝜓𝜓! ≈ 0.460 , 𝜓𝜓! ≈ 0.391 , 𝜓𝜓! ≈ 0.276 , 𝜓𝜓! ≈ 0.526 , 𝜓𝜓! ≈ 0.509 , 𝜓𝜓! ≈

0.458, 𝜓𝜓! ≈ 0.376, 𝜓𝜓!" ≈ 0.315, 𝐶𝐶! = −1 (Constraint 14), 𝐶𝐶! ≈ −0.338, 𝐶𝐶! ≈ −0.001, 𝐶𝐶! ≈ 0.340, 

𝐶𝐶! = 1 (Constraint 14). 

Considering randomness in generating sample data, and differences in category boundaries, 

𝐶𝐶! = −1.5  and 𝐶𝐶! = 1.5  in generation of the dataset and 𝐶𝐶! = −1  and 𝐶𝐶! = 1  in estimation with 

Constraint 14, these point estimates correspond well to parameter values used in generation of the dataset 

Table 1. 

 From these point estimates, reliability coefficients were estimated in Step 3 as follows: 

𝜌𝜌!"# ≈ 0.905, 𝛼𝛼 ≈ 0.913, 𝜌𝜌!!! ≈ 0.915, 𝜌𝜌! ≈ 0.927. 
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Figure 2. Posterior distributions of reliability coefficients for the data sets Table 1(a) and Table 2 (b). Each 

of the curves was drawn by kernel smoothing of 1000 sample points.  

 

Posterior distributions of reliability coefficients estimated in Step 6 are shown in Figure 2a. 

Although the distributions rather overlapped, they shifted slightly from the left to the right in the order of 

𝜌𝜌!"#, 𝛼𝛼, 𝜌𝜌!!! , and 𝜌𝜌!. 

 For the Table 2 dataset (binary items), point estimates of parameters in Step 2 were as 

follows: 

𝜇𝜇!! ≈ 0.059 , 𝜇𝜇!! ≈ 0.147 , 𝜇𝜇!! ≈ 0.130 , 𝜇𝜇!! ≈ 0.125 , 𝜇𝜇!! ≈ 0.230 , 𝜇𝜇!! ≈ −0.224 , 𝜇𝜇!! ≈ −0.180 , 

𝜇𝜇!! ≈ −0.172, 𝜇𝜇!! ≈ −0.197, 𝜇𝜇!!" ≈ −0.449, 𝜆𝜆!! ≈ 0.806, 𝜆𝜆!! ≈ 1.112, 𝜆𝜆!! ≈ 1.092, 𝜆𝜆!! ≈ 1.363, 

𝜆𝜆!! ≈ 3.273, 𝜆𝜆!! ≈ 0.886, 𝜆𝜆!! ≈ 0.721, 𝜆𝜆!! ≈ 1.018, 𝜆𝜆!! ≈ 1.589, 𝜆𝜆!!" ≈ 2.212. 

Note that 𝜇𝜇!" = 𝜇𝜇! 𝜓𝜓! and 𝜆𝜆!" = 𝜆𝜆! 𝜓𝜓!. 

 Considering randomness in generating sample data, and differences in units of scales, 

different 𝜓𝜓!s in generation of the dataset and the same 𝜓𝜓!s (the constraint 𝜓𝜓! = 1 to set units) in 

estimation, these point estimates correspond well to parameter values used in generation of the dataset 

Table 2. 

 From these point estimates, reliability coefficients were calculated as follows: 

𝜌𝜌!"# ≈ 0.806, 𝛼𝛼 ≈ 0.866, and 𝜌𝜌!!! ≈ 0.871. 

Since a common unit is not used for binary items, 𝜌𝜌! was not calculated. 

 Posterior distributions of the reliability coefficients estimated in Step 6 are shown in Figure 

2b. The distribution of 𝜌𝜌!"# is clearly separated from those of 𝛼𝛼 and 𝜌𝜌!!! . Hence, estimating 𝜌𝜌!"# as 

the index that denotes binary items’ predictive power is worthwhile. Reliability coefficients 𝛼𝛼 and 𝜌𝜌!!!  

overestimate the relationship between true values and observed values. 
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4. Discussion 

 

Three aspects of reliability—precision, consistency, and predictive power—were indicated, and 

reliability coefficients’ corresponding definitions were discussed. These reliability coefficients are defined 

for continuous items and have the same value under their defined conditions. Hence, they can be 

considered to denote the same concept, that is, reliability from different perspectives. 

 In psychology, however, most scales are constructed essentially by the sum of scores on 

ordinal categorical items, and for ordinal categorical items, these three types of reliability coefficients 

represent meanings of reliability with respect to variables’ different relations and thus have different values. 

The model for ordinal categorical items consists of categorical variables 𝑌𝑌!"s and latent continuous 

variables 𝑈𝑈!"s. Categorical variable 𝑌𝑌!" is determined by latent continuous variable 𝑈𝑈!" and category 

boundaries 𝐶𝐶!s. Some information of 𝑈𝑈!"  is lost when 𝑌𝑌!!  is given by categorization of 𝑈𝑈!" . This 

nonlinear transformation makes the three types of reliability coefficient differ from each other because 

each coefficient reflects a different aspect of the nonlinear transformation. Precision reliability coefficient 

𝜌𝜌!  of 𝑈𝑈!"s, which are not discretized and are independent of categorization, has the largest value. 

Predictive reliability coefficient 𝜌𝜌!"#, which is the 𝑅𝑅!-index of regression of observed scores 𝑌𝑌!s, i.e., 

sums of discretized values 𝑌𝑌!!s of 𝑈𝑈!"s, on true values 𝐹𝐹!s, has a smaller value than 𝜌𝜌!. Consistency 

reliability coefficient 𝜌𝜌!!! , which represents correlation between parallel tests 𝑌𝑌 and 𝑌𝑌′, takes a value 

between 𝜌𝜌!"#  and 𝜌𝜌! . The popular reliability coefficient 𝛼𝛼 , which is calculated from variances of 

categorical variables, takes a value similar to 𝜌𝜌!!! . Reliability coefficients 𝜌𝜌!!!  and 𝛼𝛼  tend to be 

between 𝜌𝜌!"#  and 𝜌𝜌!  (Figures 1 and 2). These tendencies of ordinal categorical items’ reliability 

coefficients were also shown by results from the author’s simulations, which are not reported in this study. 

If the real relationship between observed scores and true values, i.e., intensity of the concept to be 

measured, is asked, reliability coefficient 𝜌𝜌!"#, which denotes the relation of observed scores and true 

values, should be calculated. 

 This study proposes an explicit regression model of observed scores on true values (Equation 

11). The model of generation of observed scores from true values (Equations 3 and 4) should be 

discriminated from regression Model 11. Values of Model 11’s parameters are determined by the 

least-squares criterion. The predictive power of Model 11 is given by 𝜌𝜌!"#. Since calculation of 𝜌𝜌!"# 

requires some computation time, 𝑁𝑁!"# subsamples were chosen randomly from 𝑁𝑁!"#$ samples of the 

main MCMC, and reliability coefficients’ posterior distributions were calculated for 𝑁𝑁!"# subsamples to 

reduce computation time. Figure 2 shows that 1,000 samples are sufficient to draw a curve of posterior 

distributions. Since predictive reliability coefficient 𝜌𝜌!"#  can clearly differ from other reliability 

coefficients for items with a small number of categories (cf. Figure 2b), and coefficient 𝜌𝜌!"# denotes the 

relation of observed scores and true values, it is worth calculating. 
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Appendix 

The formulae used to calculate 𝜌𝜌!"#, 𝜌𝜌!!! , and 𝛼𝛼 are listed below: 

 First, we have 

𝜌𝜌!"# = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌!, 𝐹𝐹! ! =
𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌!, 𝐹𝐹! !

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌! ∙ 𝑉𝑉𝑉𝑉𝑉𝑉 𝐹𝐹!
=

𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌!, 𝐹𝐹! !

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌!
,                                 (A. 1) 

because, by assumption, 

Var 𝐹𝐹! = 1. 

We have 

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌! = 𝐸𝐸 𝑌𝑌! − 𝐸𝐸 𝑌𝑌!
!
= 𝐸𝐸 𝑌𝑌!! − 𝐸𝐸 𝑌𝑌! !.                                             (A. 2) 

By definition of expectation, 

𝐸𝐸 𝑌𝑌! = 𝐸𝐸 𝑌𝑌!"

!

!!!

= 𝐸𝐸 𝑌𝑌!"

!

!!!

= 𝑘𝑘 ∙ 𝑃𝑃 𝑌𝑌!" = 𝑘𝑘
!

!!!

!

!!!

.                                 (A. 3) 

We have 

                      𝑃𝑃 𝑌𝑌!" = 𝑘𝑘 = 𝑃𝑃 𝐶𝐶!!! ≤ 𝑈𝑈!" < 𝐶𝐶!  

= 𝛷𝛷 𝐶𝐶! − 𝜇𝜇! + 𝜆𝜆!𝐹𝐹! 𝜓𝜓!
!!

!!
  

−𝛷𝛷 𝐶𝐶!!! − 𝜇𝜇! + 𝜆𝜆!𝐹𝐹! 𝜓𝜓! 𝜙𝜙 𝐹𝐹! 𝑑𝑑𝐹𝐹!,                                             (A. 4) 

where 𝜙𝜙 𝑧𝑧  is the standard normal distribution function and 𝛷𝛷 𝑧𝑧  is the cumulative distribution function 

of 𝜙𝜙 𝑧𝑧 , that is, 

𝜙𝜙 𝑧𝑧 = !
!!
exp − !

!
𝑧𝑧! ,  and 𝛷𝛷 𝑧𝑧 = 𝜙𝜙!

!! 𝑡𝑡 dt . 

It is assumed that 

𝛷𝛷 −∞ = 0,    and   𝛷𝛷 +∞ = 1 .  

We have 

𝐸𝐸 𝑌𝑌!! = 𝐸𝐸 𝑌𝑌!"

!

!!!

!

= 𝐸𝐸 𝑌𝑌!"!
!

!!!

+ 𝐸𝐸 𝑌𝑌!"!𝑌𝑌!"!

!

!!!!
!"!!"

!

!!!!

 .                           (A. 5) 
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For the terms in Equation A.5, we have 

𝐸𝐸 𝑌𝑌!"! = 𝑘𝑘! ∙ 𝑃𝑃 𝑌𝑌!" = 𝑘𝑘
!

!!!

                                                                    (𝐴𝐴. 6) 

and  

𝐸𝐸 𝑌𝑌!"!𝑌𝑌!"! = 𝑘𝑘1 ∙ 𝑘𝑘2 ∙ 𝑃𝑃 𝑌𝑌!"! = 𝑘𝑘1, 𝑌𝑌!"! = 𝑘𝑘2
!

!!!!

!

!!!!

.                               (𝐴𝐴. 7) 

We have 

               𝑃𝑃 𝑌𝑌!"! = 𝑘𝑘1, 𝑌𝑌!"! = 𝑘𝑘2  

= 𝛷𝛷 𝐶𝐶!! − 𝜇𝜇!! + 𝜆𝜆!!𝐹𝐹! 𝜓𝜓!! − 𝛷𝛷 𝐶𝐶!!!! − 𝜇𝜇!! + 𝜆𝜆!!𝐹𝐹! 𝜓𝜓!!
!!

!!
 

× 𝛷𝛷 𝐶𝐶!! − 𝜇𝜇!! + 𝜆𝜆!!𝐹𝐹! 𝜓𝜓!! − 𝛷𝛷 𝐶𝐶!!!! − 𝜇𝜇!! + 𝜆𝜆!!𝐹𝐹! 𝜓𝜓!! 𝜙𝜙 𝐹𝐹! 𝑑𝑑𝐹𝐹!.         (A. 8) 

Note that Equation A.8 assumes 𝑗𝑗1 ≠ 𝑗𝑗2. 

The numerator of Equation A.1 is 

                              𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌!, 𝐹𝐹! = 𝐸𝐸 𝑌𝑌! − 𝐸𝐸 𝑌𝑌! 𝐹𝐹! − 𝐸𝐸 𝐹𝐹!   

= 𝐹𝐹! 𝑘𝑘 𝛷𝛷 𝐶𝐶! − 𝜇𝜇! + 𝜆𝜆!𝐹𝐹! 𝜓𝜓!

!

!!!

!

!!!

!!

!!
 

−𝛷𝛷 𝐶𝐶!!! − 𝜇𝜇! + 𝜆𝜆!𝐹𝐹! 𝜓𝜓! 𝜙𝜙 𝐹𝐹! 𝑑𝑑𝐹𝐹!                                       (A. 9) 

    Using Equations A.1 to A.9, 𝜌𝜌!"# can be calculated with parameter values 𝜇𝜇!s, 𝜆𝜆!s, 𝜓𝜓!s and 𝐶𝐶!s. 

 

 By definition, 𝜌𝜌!!!  is given by 

𝜌𝜌!!! = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌!, 𝑌𝑌!! =
𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌!, 𝑌𝑌!

!

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌! 𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌!!
=
𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌!, 𝑌𝑌!

!

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌!
 ,                                      (A. 10) 

where 𝑌𝑌!! is a parallel test of 𝑌𝑌!. 

We have 

𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌!, 𝑌𝑌!! = 𝐸𝐸 𝑌𝑌!"!𝑌𝑌!"!!
!

!!!!

!

!!!!

− 𝐸𝐸 𝑌𝑌!"

!

!!!

!

                                       (A. 11) 

and 
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𝐸𝐸 𝑌𝑌!"!𝑌𝑌!"!! = 𝑘𝑘1 ∙ 𝑘𝑘2 ∙ 𝑃𝑃 𝑌𝑌!"! = 𝑘𝑘1, 𝑌𝑌!"!! = 𝑘𝑘2
!

!!!!

!

!!!!

.                                  (A. 12) 

Probability 𝑃𝑃 𝑌𝑌!"! = 𝑘𝑘1, 𝑌𝑌!"!! = 𝑘𝑘2  is given by 

                             𝑃𝑃 𝑌𝑌!"! = 𝑘𝑘1, 𝑌𝑌!"!! = 𝑘𝑘2  

= 𝛷𝛷 𝐶𝐶!! − 𝜇𝜇!! + 𝜆𝜆!!𝐹𝐹! 𝜓𝜓!! − 𝛷𝛷 𝐶𝐶!!!! − 𝜇𝜇!! + 𝜆𝜆!!𝐹𝐹! 𝜓𝜓!!
!!

!!
 

× 𝛷𝛷 𝐶𝐶!! − 𝜇𝜇!! + 𝜆𝜆!!𝐹𝐹! 𝜓𝜓!! − 𝛷𝛷 𝐶𝐶!!!! − 𝜇𝜇!! + 𝜆𝜆!!𝐹𝐹! 𝜓𝜓!! 𝜙𝜙 𝐹𝐹! 𝑑𝑑𝐹𝐹!.             (A. 13) 

Note that since 𝑌𝑌!! is a parallel test of 𝑌𝑌!, 𝑗𝑗1 might be equal to 𝑗𝑗2, but in Equation A.8, we assume that 

𝑗𝑗1 ≠ 𝑗𝑗2. 

           𝜌𝜌!!!  can be calculated by Equations A.2, A.3, A.10, A.11, A.12, and A.13. 

 

 Coefficient 𝛼𝛼 is given by 

𝛼𝛼 =
𝑀𝑀

𝑀𝑀 − 1
1 −

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌!"!
!!!

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌!
 .                                                 (A. 14) 

 We have 

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌!" = 𝐸𝐸 𝑌𝑌!" − 𝐸𝐸 𝑌𝑌!"
!
= 𝐸𝐸 𝑌𝑌!"! − 𝐸𝐸 𝑌𝑌!"

!
 .                          (A. 15) 

The two terms of Equation A.15 can be calculated as follows: 

𝐸𝐸 𝑌𝑌!" = 𝑘𝑘 ∙ 𝑃𝑃 𝑌𝑌!" = 𝑘𝑘
!

!!!

,                                                           (A. 16) 

𝐸𝐸 𝑌𝑌!"! = 𝑘𝑘! ∙ 𝑃𝑃 𝑌𝑌!" = 𝑘𝑘
!

!!!

.                                                        (A. 17) 

Hence, coefficient 𝛼𝛼 can be calculated by Equations A.2, A.14, A.15, A.16, and A.17. 
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