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A Two-Step Analysis with Common Quantification 
of Categorical Data 

 

カテゴリカルデータの共通数量化２段分析 
 

OKAMOTO Yasuharu  
岡 本 安 晴 

 

[Abstract] A data from a psychological research may contain categorical variables. This study 

proposes to use common quantification of categorical variables for various analyses, so that 

results from those analyses can be interpreted according to common quantification. The 

proposed method consists of two steps. In step 1, categorical variables are quantified 

independently of the subsequent analyses. After quantification, in step 2, various analyses are 

conducted based on common quantification. A hypothetical data set, including two categorical 

variables and one continuous variable, was prepared. Categorical variables were quantified in 

step 1; then in step 2, using the quantification in step 1, principal components, regression, and 

discriminant analyses were successfully conducted.  

[Key Words] quantification, categorical variable, nominal variable, multivariate analysis, 

eigendecomposition 

 

Introduction 

A data from a psychological research may contain categorical variables. This study proposes to use 

common quantification of categorical variables for various analyses so that results from those analyses can 

be understood according to common quantification. Usually, analysis of categorical data by quantification 

is done with criterion expression, set to make the quantification fit the analytical purpose. For example, 

homogeneity analysis uses the homogeneity function 𝜎𝜎! 𝑋𝑋, 𝑌𝑌 = 𝑚𝑚!! 𝑆𝑆𝑆𝑆𝑆𝑆 𝑋𝑋 − 𝐺𝐺!𝑌𝑌!!  as a criterion, 

where 𝐺𝐺! is an indicator matrix (data), and 𝑋𝑋 and 𝑌𝑌! are quantifications (Gifi, 1990). This quantification 

is meant to extract the homogeneity structure of the data 𝐺𝐺!s. In general, optimal quantification is assigned 

according to a criterion set to reflect specific information among categorical variables, so, the 

quantification depends on the specified relations among them. However, when investigating various 

relationships in data, e.g., homogeneity, regression, discrimination, and so on, it would be informative to 

use common quantification for various analyses. This study proposes to use common quantification, based 

on which analyses can be conducted. Since common quantification is used for various subsequent analyses, 

it must not be influenced by them. 

Categorical data, to which quantification is applied, might be gathered in various forms, and many 

quantification methods have been proposed. Explanations and discussions have been presented (Gifi, 

1990; Greenacre, 2007; Nishisato, 2007). However, in this study, only one type of categorical data is 
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employed. Data are assumed to be a matrix form, each row 𝒙𝒙! = 𝑥𝑥!!,⋯ , 𝑥𝑥!"  comprising individual data. 

Furthermore, 𝑥𝑥!"  might be categorical or continuous. Categorical variables can be analyzed with 

continuous variables after quantification. Furthermore, categories are assumed to be nominal, i.e., not 

ordered. 

Two-Step Analysis: Quantification and Analyses 

Let  

𝑋𝑋 = 𝑥𝑥!" = 𝑋𝑋!,⋯ , 𝑋𝑋!, 𝑋𝑋!!!,⋯ , 𝑋𝑋!!!  

denote the data, where 

𝑋𝑋! = 𝑥𝑥!!,⋯ , 𝑥𝑥!"
!
 

and 𝑛𝑛 is the number of individuals. Assume that 𝑋𝑋!, ⋯ , 𝑋𝑋! are continuous variables and 𝑋𝑋!!!, ⋯ , 

𝑋𝑋!!! are categorical variables. In the first step, each 𝑋𝑋!!! of categorical variables is quantified; then, in 

the second step, various multivariate analyses are applied to quantified categorical variables, possibly with 

continuous variables. 

 To quantify categorical variables independently of the specific subsequent analyses, each 

categorical variable is quantified on its own structure of information. Statistically, information of a 

categorical variable, which is nominal, is represented by frequency distribution of categories, so 

quantification is based on frequency of information. 

Step 1: Quantification 

Let 𝑋𝑋!!! have 𝐶𝐶! categories, say 1 to 𝐶𝐶!. Set the indicator matrix 𝐺𝐺! = 𝑔𝑔!"
(!)  of 𝑋𝑋!!! 

as follows 

𝑔𝑔!"
! = 1          if  𝑥𝑥!,!!! = 𝑗𝑗

0            𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
                                                                                                                                                         1  

 When category 𝑗𝑗 is quantified as 𝜔𝜔!", individual 𝑖𝑖’s quantified score of categorical variable 

𝑋𝑋!!! is represented by 

𝑔𝑔!"
! 𝜔𝜔!"

!!

!!!

  .                                                                                                                                                                                     2  

 

Since statistical structure about information on categorical variable 𝑋𝑋!!! is represented by frequency 

distribution of categories 1 to 𝐶𝐶!  and we consider that information about frequency distribution is 

maximally reflected by quantification when variance of the quantified variable is maximized (Tenenhaus 

and Young, 1985), we choose quantification 𝜔𝜔!" so that variance of Equation 2 becomes (relative) 

maximum under the constraint on 𝜔𝜔!"s.  

Since 

𝟏𝟏!! 𝐺𝐺!𝝎𝝎! = 𝒇𝒇!𝝎𝝎! , 

the variance is given by 
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1
𝑛𝑛

𝐺𝐺! −
1
𝑛𝑛
𝟏𝟏!𝒇𝒇! 𝝎𝝎!

!
𝐺𝐺! −

1
𝑛𝑛
𝟏𝟏!𝒇𝒇! 𝝎𝝎!   

where 𝒇𝒇! = 𝟏𝟏!! 𝐺𝐺!, 𝝎𝝎! = 𝜔𝜔!! ⋯𝜔𝜔!!! , and 𝟏𝟏! = 1  ⋯ 1 ! is the 𝑛𝑛−dimensional column vector with 

all elements being 1. 

 Set 

𝐻𝐻! = 𝐺𝐺! −
1
𝑛𝑛
𝟏𝟏!𝒇𝒇!  

 Choose quantification 𝝎𝝎!, which optimally reflects information contained in categorical data 

𝐺𝐺!, so that 𝝎𝝎! maximizes 

𝐻𝐻!𝝎𝝎!
! 𝐻𝐻!𝝎𝝎!  

under the constraint 

𝝎𝝎!
! 𝝎𝝎! = 1. 

 Set a Lagrangian function as follows (Magnus & Neudecker, 1999): 

𝑄𝑄 = 𝐻𝐻!𝝎𝝎!
! 𝐻𝐻!𝝎𝝎! − 𝜆𝜆 𝝎𝝎!

! 𝝎𝝎! − 1 . 

Differentiating 𝑄𝑄 with 𝝎𝝎!, we get 

𝜕𝜕𝜕𝜕
𝜕𝜕𝝎𝝎!

= 2𝐻𝐻!!𝐻𝐻!𝝎𝝎! − 2𝜆𝜆𝝎𝝎!. 

 Hence, the optimal quantification 𝝎𝝎! satisfies 

𝐻𝐻!!𝐻𝐻!𝝎𝝎! = 𝜆𝜆!𝝎𝝎!, 

where 𝝎𝝎! is an eigenvector of 𝐻𝐻!!𝐻𝐻!, and 𝜆𝜆! is the associated eigenvalue. 

 The number of 𝜆𝜆! s is 𝐶𝐶! . Denote these 𝜆𝜆! s as 𝜆𝜆!
(!) , ⋯, 𝜆𝜆!

(!!) . We can assume that 

𝜆𝜆!
(!) ≥ ⋯ ≥ 𝜆𝜆!

(!!) ≥ 0. (See the Appendix for more technical details.) 

 Set 

𝝎𝝎 =
1
𝐶𝐶!
𝟏𝟏!!, 

then  

𝐻𝐻!!𝐻𝐻!𝝎𝝎 =
1
𝐶𝐶!
𝐻𝐻!! 𝐺𝐺! −

1
𝑛𝑛
𝟏𝟏!𝒇𝒇! 𝟏𝟏!! = 𝟎𝟎 

Hence, we have 

𝜆𝜆!
(!!) = 0,      𝝎𝝎!

!! = 1 𝐶𝐶! 𝟏𝟏!!. 

  

The variance of the quantified 𝐺𝐺! by 𝜔𝜔!
(!) is given by 

𝑉𝑉𝑉𝑉𝑉𝑉 𝐺𝐺!𝝎𝝎!
(!) = 𝑉𝑉𝑉𝑉𝑉𝑉 𝐻𝐻!𝝎𝝎!

(!) =
𝜆𝜆!
(!)

𝑛𝑛
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Hence, for 𝜆𝜆!
(!) > 0, the standardized score 𝒛𝒛!

(!) of 𝐺𝐺!𝝎𝝎!
(!) is given by 

𝒛𝒛!
(!) = 𝜆𝜆!

(!) 𝑛𝑛
!! !

𝐻𝐻!𝝎𝝎!
(!).                                                                                              (3) 

Set 

𝐺𝐺!! = 𝒛𝒛!
(!) ⋯ 𝒛𝒛!

(!!) , 

where 𝐾𝐾! denotes the number of 𝜆𝜆!
(!)s, which are not 0. 

 𝐺𝐺!! is the quantification of 𝑋𝑋!!!, obtained independently of other 𝑋𝑋!s and analyses planned 

after quantification. After quantification in step 1, various multivariate analyses can be applied to the data. 

For analyses, the same quantification 𝐺𝐺!!s of 𝑋𝑋!!! can be used. 

Step2: Analyses 

 After quantifying categorical data 𝑋𝑋!!!s, we have quantitative data  

𝑋𝑋! = 𝑋𝑋! ⋯ 𝑋𝑋! 𝐺𝐺!! ⋯ 𝐺𝐺!! . 

To this data, we can apply various multivariate analyses such as principal components analysis (PCA), 

regression analysis, and discriminant analysis. As examples, these three analyses will be briefly discussed, 

considering the use of quantification 𝐺𝐺!!s. 

Principal Components Analysis. First, select variables from 𝑋𝑋!  to which PCA will be 

applied. If unstandardized variables are included, standardize them. Donate the standardized data to which 

PCA will be applied by 𝑍𝑍. The PCA of 𝑍𝑍 can be viewed as the orthogonal projection of 𝑍𝑍, which 

maximizes variance of the projected 𝑍𝑍 (Okamoto, 2006). Here, it should be emphasized that projection is 

performed in one step, although the classical explanation extracts principal components individually under 

orthogonal constraint (Morrison, 1976). Principal components are given in the subspace on which 𝑍𝑍 is 

optimally projected, and mathematically, any coordinate system can be justified in the subspace. Rotation 

in PCA is associated with the selection of a coordinate system, so any rotation is mathematically justified. 

When eigenvectors of the data’s correlation matrix are adopted as bases of the coordinate system and the 

coordinates are standardized, we obtain the so-called principal components. 

Multiple factor analysis (MFA) (cf. Bécue−Bertaut & Pagès, 2008) also employs a two-step 

PCA method for categorical data. However, MFA employs only the first eigenvalues of 𝐺𝐺!s. It should be 

noted that quantification in this study uses all eigenvalues to construct 𝑧𝑧!
(!) (Equation 3). 

Regression Analysis. To investigate dependence of a quantitative variable 𝑋𝑋! (𝑠𝑠 = 1,⋯ , 𝑝𝑝) on 

categorical variables 𝑋𝑋!!!s (𝑡𝑡 = 1,⋯ , 𝑞𝑞), regression analysis, which has 𝑋𝑋! as a dependent variable and 

𝐺𝐺!!s as predictor variables, can be employed. When some independent variables have strong correlations 

among them, the estimation of regression coefficient might become unstable (multicolinearity). We can 

use principal components (or rotated principal components) to avoid multicolinearity in this case. 

Discriminant Analysis. Next, consider applying Fisher’s linear discriminant function (Mardia, 

Kent, & Bibby, 1979) to 𝑋𝑋! . Select 𝑟𝑟 variables to be used in discriminant analysis and denote them as  
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𝒛𝒛!! = 𝑧𝑧!!! ⋯ 𝑧𝑧!!" !, 

where 𝑧𝑧!!" is the value of individual 𝑖𝑖 in group ℎ on the 𝑗𝑗−th variable selected. Assume that 𝒛𝒛!!s are 

centered, i.e., 

𝑧𝑧!!"
!,!

= 0. 

 Set a linear combination of 𝑧𝑧!!"s as follows: 

𝑦𝑦!! = 𝑣𝑣!𝑧𝑧!!"
!

= 𝒗𝒗!𝒛𝒛!!, 

where 𝒗𝒗 = 𝑣𝑣! ⋯ 𝑣𝑣! !  is a column vector. Determine 𝒗𝒗 , which maximizes the ratio of the 

between-group variance, 𝑆𝑆𝑆𝑆!"#$""%, to the within-group variance, 𝑆𝑆𝑆𝑆!"#!!", under the constraint 𝒗𝒗!𝒗𝒗 = 1. 

𝒗𝒗, which gives the 𝑘𝑘−th relative maximum of 𝑆𝑆𝑆𝑆!"#$""% 𝑆𝑆𝑆𝑆!"#!!" under the constraint 𝒗𝒗!𝒗𝒗 = 1, defines 

the 𝑘𝑘−th canonical variate (Mardia, Kent, and Bibby, 1979) or the 𝑘𝑘−th discriminant factor (Cooley & 

Lohnes, 1971). 

 The prominent property of the two-step analysis is that the categorical data’s common 

quantification can be used for various multivariate analyses. In the next section, a simple example is 

presented. 

 
Table 1 A Hypothetical Data Set 

ID Group Y CV−1 CV−2 

A GA 10 Dog Apple 

A0 GA 12 Dog Bean 

A1 GA 15 Dog Bean 

A2 GA 17 Fish Apple 

B GB 50 Cat Apple 

B1 GB 47 Cat Bean 

B2 GB 51 Fish Apple 

C GC 49 Dog Pear 

C1 GC 52 Dog Bean 

C2 GC 47 Fish Pear 

D GD 90 Cat Pear 

D0 GD 88 Fish Pear 

D1 GD 87 Cat Bean 

D2 GD 89 Fish Pear 
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Example of an Application 

The proposed two-step analysis was applied to a hypothetical data set (Table 1), comprising 

five variables, i.e., ID (individual identification); Group (group identification); Y (a continuous variable); 

CV−1 (a categorical variable with categories, Dog, Cat, and Fish); and CV−2 (a categorical variable with 

categories, Apple, Pear, and Bean). Groups A, B, C, and D are characterized by (Dog, Apple); (Cat, 

Apple); (Dog, Pear); and (Cat, Pear); respectively. Categories Fish and Bean are irregular. Variable Y 

takes relatively lesser values in group A, intermediate ones in groups B and C, and greater ones in group 

D. 

Step 1: Quantification 

 Indicator matrices, 𝐺𝐺! and 𝐺𝐺!, of categorical variables CV−1 and CV−2 were constructed 

by assigning integers 1, 2, and 3 to categories Dog, Cat, and Fish of CV−1, and to categories Apple, Pear, 

and Bean of CV−2, respectively (Figure 1). From 𝐺𝐺! s, 𝐻𝐻! s were calculated. Eigenvalues and 

eigenvectors of 𝐻𝐻!!𝐻𝐻!s are shown in Table 2. From these eigenvalues and eigenvectors, the standardized 

scores 𝑧𝑧!
(!)s were calculated (Table 3). 𝑧𝑧!

(!)s denote the ℎ−th standardized scores of the categorical 

variable CV−k. 

CV−1 CV−2 

           1 0 0 

           1 0 0 

           1 0 0 

           0 0 1 

           0 1 0 

           0 1 0 

    𝐺𝐺! =   0 0 1 

           1 0 0 

           1 0 0 

           0 0 1 

           0 1 0 

           0 0 1 

           0 1 0 

           0 0 1 

1 0 0 

0 0 1 

0 0 1 

1 0 0 

1 0 0 

0 0 1 

                  𝐺𝐺! =   1 0 0  

0 1 0 

0 0 1 

0 1 0 

0 1 0 

0 1 0 

0 0 1 

0 1 0 
Figure 1. The indicator matrix 𝐺𝐺! for categorical variable CV−k. To 
make indicator matrices by Equation 1, categories in Table 1 are 
converted to integers as follows: Dog and Apple to 1, Cat and Pear to 2, 
and Fish and Bean to 3. 
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TABLE 2  Eigenvalues and Eigenvectors of 𝐻𝐻!!𝐻𝐻! 

 𝐻𝐻!!𝐻𝐻! 𝐻𝐻!!𝐻𝐻! 

𝜆𝜆!
(!) > 0  5.000 4.286  5.000 4.286 

𝜔𝜔!
(!) 

Dog 

Cat 

Fish 

0.707 

0.000 

−0.707 

−0.408 

0.816 

−0.408 

Apple 

Pear 

Bean 

0.000 

0.707 

−0.707 

0.816 

−0.408 

−0.408 

 
TABLE 3  The ℎ − th  Standardized Scores, 𝑧𝑧!

(!), of Categorical Variable CV−k 

ID 𝑧𝑧!
(!) 𝑧𝑧!

(!) 𝑧𝑧!
(!) 𝑧𝑧!

(!) 

   A   

   A0  

   A1  

   A2  

   B   

   B1  

   B2  

   C   

   C1  

   C2  

   D   

   D0  

   D1  

   D2  

1.183 

1.183 

1.183 

−1.183 

0.000 

0.000 

−1.183 

1.183 

1.183 

−1.183 

0.000 

−1.183 

0.000 

−1.183 

−0.632 

−0.632 

−0.632 

−0.632 

1.581 

1.581 

−0.632 

−0.632 

−0.632 

−0.632 

1.581 

−0.632 

1.581 

−0.632 

0.000 

−1.183 

−1.183 

0.000 

0.000 

−1.183 

0.000 

1.183 

−1.183 

1.183 

1.183 

1.183 

−1.183 

1.183 

1.581 

−0.632 

−0.632 

1.581 

1.581 

−0.632 

1.581 

−0.632 

−0.632 

−0.632 

−0.632 

−0.632 

−0.632 

−0.632 

 

Step2: Multivariate Analyses 

Principal Component Analysis.  PCA was applied to a set of variables 𝑧𝑧!
(!) through 

𝑧𝑧!
(!). Singular values, derived from PCA, are shown in Table 4 (as to the relationship between singular 

value decomposition and PCA, c.f. Okamoto (2006)). The principal components are shown in Table 5. 

Correlation coefficients between the principal components and quantification 𝑧𝑧!
(!)s are shown in Table 6. 

Figure 2 shows the configuration of individuals on the first and second principal components. Uniform 

random jitters centered at zero were added to the coordinates to avoid the complete overlapping of circles 

with same coordinate values. We see that the first principal component, denoted as Comp. 1, represents the 

irregular categories, i.e., Fish and Bean. Figure 3 shows the configuration of the second and third principal 
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components, denoted as Comp. 2 and Comp. 3, respectively, with uniform random jitters added. We 

observe that the second principal component, i.e., Comp. 2, discriminates among groups B, A and D, and 

C, and the third one, i.e., Comp. 3, differentiates among groups A, B and C, and D. 

Regression Analysis. Regression analysis was applied to the dependent variable Y with 

independent variables 𝑧𝑧!
(!), 𝑧𝑧!

(!), 𝑧𝑧!
(!), and 𝑧𝑧!

(!). That is, the following model 4 was set: 

Y = 𝛽𝛽! + 𝛽𝛽!𝑧𝑧!
(!) + 𝛽𝛽!𝑧𝑧!

(!) + 𝛽𝛽!𝑧𝑧!
(!) + 𝛽𝛽!𝑧𝑧!

(!) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅          	
 	
 	
                                     (4) 

TABLE 4  Singular Values from PCA 

1.252 1.009 0.991 0.658 

 

TABLE 5  Principal Components. Comp. k denotes the k−th principal component 

ID Comp. 1 Comp. 2 Comp. 3 Comp. 4 

A 

A0 

A1 

A2 

B 

B1 

B2 

C 

C1 

C2 

D 

D0 

D1 

D2 

0.204 

1.257 

1.257 

−1.053 

0.000 

1.053 

−1.053 

0.000 

1.257 

−1.257 

−0.204 

−1.257 

1.053 

−1.257 

0.343 

−0.834 

−0.834 

0.907 

2.085 

0.907 

0.907 

−1.398 

−0.834 

−0.834 

0.343 

−0.834 

0.907 

−0.834 

1.772 

0.574 

0.574 

1.198 

0.000 

−1.198 

1.198 

0.000 

0.574 

−0.574 

−1.772 

−0.574 

−1.198 

−0.574 

1.543 

−0.462 

−0.462 

−0.850 

1.156 

−0.850 

−0.850 

1.931 

−0.462 

−0.462 

1.543 

−0.462 

−0.850 

−0.462 

 

TABLE 6  Structure Matrix, i.e., Correlations between 𝑧𝑧!
(!) and Comp. j 

 Comp. 1 Comp. 2 Comp. 3 Comp. 4 

𝑧𝑧!
(!) 

𝑧𝑧!
(!) 

𝑧𝑧!
(!) 

𝑧𝑧!
(!) 

0.833 

0.301 

−0.833 

−0.301 

−0.242 

0.671 

−0.242 

0.671 

0.238 

−0.659 

−0.238 

0.659 

0.437 

0.158 

0.437 

0.158 
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Figure 2. Configuration of individuals on the first and second components denoted by Comp. 1 and Comp. 
2, respectively. To avoid complete overlapping, uniform random jitters centered at zero were added to the 
coordinates. 
 
 

 

Figure 3. Configuration of individuals on the second and third components denoted by Comp. 2 and Comp. 
3, respectively. To avoid complete overlapping, uniform random jitters centered at zero were added to the 
coordinates. 
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The estimates 𝛽𝛽! s of parameters 𝛽𝛽! s by the least squares method are shown in Table 7, and the 

configuration of point Y, Y  in Figure 4, where Y is an estimate by the model, i.e., 

𝑌𝑌 = 𝛽𝛽!+𝛽𝛽!𝑧𝑧!
(!) + 𝛽𝛽!𝑧𝑧!

(!) + 𝛽𝛽!𝑧𝑧!
(!) + 𝛽𝛽!𝑧𝑧!

(!) 

TABLE 7  Estimates of Parameters of the Regression Model: 

Y = 𝛽𝛽! + 𝛽𝛽!𝑧𝑧!
(!) + 𝛽𝛽!𝑧𝑧!

(!) + 𝛽𝛽!𝑧𝑧!
(!) + 𝛽𝛽!𝑧𝑧!

(!) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝛽𝛽! 𝛽𝛽! 𝛽𝛽! 𝛽𝛽! 𝛽𝛽! 

50.29 −10.54 12.71 9.79 −12.90 

 

The configuration in Figure 4 shows that the global tendency of variation in Y is captured by the 

regression model (4). The figures in Table 7 (see also weights 𝜔𝜔!
(!)s in Table 2) show that Ys tend to be 

greater for category Cat than for category Dog (𝛽𝛽! = −10.54, 𝛽𝛽! = 12.71) and greater for category Pear 

than for category Apple (𝛽𝛽! = 9.79, 𝛽𝛽! = −12.90). 

 
 

Figure 4. Configuration of Y, Y , where Y is an estimate by the regression model. 

 

 When the principal components were used as independent variables, i.e., the following model 

Y = 𝛽𝛽! + 𝛽𝛽!𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 1 + 𝛽𝛽!𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 2 + 𝛽𝛽!𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 3 + 𝛽𝛽!𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 4 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

was used, the results shown in Table 8 were obtained. The value −21.72 of 𝛽𝛽! indicates the overall 

tendency of Y, which increases from group A through groups B and C to group D (Figure 3). Coefficient 

𝛽𝛽! = −9.21 means that Y tends to be less for category Bean than for category Fish (Figures 2 and 4). 

Y 

Y! 
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TABLE 8  Estimates of Parameters of the Regression Model: 

Y = 𝛽𝛽! + 𝛽𝛽!𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 1 + 𝛽𝛽!𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 2 + 𝛽𝛽!𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 3 + 𝛽𝛽!𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. 4 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

𝛽𝛽! 𝛽𝛽! 𝛽𝛽! 𝛽𝛽! 𝛽𝛽! 

50.29 −9.21 0.05 −21.72 −0.36 

 

Discriminant Analysis. Discriminant analysis was applied to the data set that has a group 

identification variable Group (Table 1) and independent variables 𝑧𝑧!
(!), 𝑧𝑧!

(!), 𝑧𝑧!
(!) and 𝑧𝑧!

(!) (Table 3). 

Set a linear combination of 𝑧𝑧!
(!) to 𝑧𝑧!

(!) as follows: 

𝑦𝑦 = 𝑣𝑣!𝑧𝑧!
(!) + 𝑣𝑣!𝑧𝑧!

(!) + 𝑣𝑣!𝑧𝑧!
(!) + 𝑣𝑣!𝑧𝑧!

(!)  .                                                                                                                  (5) 

Note that means of 𝑧𝑧!
(!)s are all zero. The 𝑘𝑘−th canonical variate or discriminant factor is given as 

Equation 5 that gives the 𝑘𝑘−th largest relative maximum of the ratio of the between-groups sum of squares 

to the within-groups sum of squares (Mardia, Kent, & Bibby, 1979). 

The configuration of individuals in the discriminant plane is shown in Figure 5. Small circles 

represent individuals, which are plotted at their positions (the first  and the second  discriminant factor). 

Uniform random jitters centered at zero were added to avoid complete overlapping of individuals having 

the same coordinates. Members of each group gather around the squares, each of which represents the 

group mean’s position. Figure 5 shows that the first  discriminant factor separates individuals into groups A, 

B and C, and D, and that the second  discriminant factor separates individuals into groups B, A and D, and 

C. 

 
 
Figure 5. Configuration of individuals (circles) and group means (squares) in the discriminant plane. To 
avoid complete overlapping, uniform random jitters centered at zero were added to the coordinates. 
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 In a comparison of the results from the discriminant and principal components analyses, 

correlation coefficients were calculated between the discriminant factors and principal components. Table 

9 shows that the first, second, and third  discriminant factors are almost identical to the third, second, and 

fourth  principal components, respectively, although the directions of the second discriminant factor and the 

second  principal component are opposite. Absolute values of the correlation coefficients of these pairs are 

greater than 0.9. The configurations of individuals in Figures 3 and 5 reflect this correspondence between 

the discriminant factors and the principal components. 

 

TABLE 9  Correlation Coefficients between Principal Components and Discriminant Factors: 

Disc.  𝑖𝑖 denotes the 𝑖𝑖−th discriminant factor, and Comp. j denotes the 𝑗𝑗−th principal component 

 Disc. 1 Disc. 2 Disc. 3 

Comp. 1 0.375 0.000 0.000 

Comp. 2 0.000 −0.979 0.202 

Comp. 3 0.927 0.000 0.000 

Comp. 4 0.000 0.202 0.979 

 

Discussion 

 In the example of application of the two-step analysis to the hypothetical data set (Table 1), 

common quantification of categorical data was used for the three analyses: principal components, 

regression, and discriminant analyses. The principal components were derived from the quantification 𝑧𝑧!
(!) 

to 𝑧𝑧!
(!) and used in the subsequent regression and discrimination analyses. By these principal components, 

derived from the common quantification in step 1, and used in various analyses in step 2, we obtain 

integrative interpretation of the results from the three analyses, i.e., principal components, regression, and 

discriminant analyses. 

 Although various methods for the different forms of categorical data have been proposed and 

discussed, in this study the data set is assumed to be a case-by-variable format, i.e., 𝑋𝑋 = 𝑥𝑥!" , where 

𝑋𝑋! = 𝑥𝑥!!,⋯ , 𝑥𝑥!"
!
 is a column vector of values of 𝑛𝑛  individuals on variable 𝑗𝑗. A two-step method of 

PCA for categorical data is also used in MFA (Bécue−Bertau & Pagès, 2008). However, MFA uses only 

the first eigenvalue for scaling values. The two-step method in this study uses all eigenvalues to 

standardize all quantifications. Furthermore, in the two-step analysis proposed in this study, quantified 

variables might not be used just for PCA, but also for other analyses as common quantification. While 

some quantification methods, e.g., analysis by meet loss, 𝜎𝜎! 𝑋𝑋, 𝑌𝑌 , use iterative algorithm, the 

quantification in step 1 of the two-step analysis is obtained using eigenvalues and eigenvectors. Iterative 

algorithm might not converge, but eigenvalues and eigenvectors can be obtained from eigendecomposition 

of a real symmetric matrix by effective algorithm (Burden & Faires, 1997; Press, Teukolsky, Vetterling, & 

Flannery, 2007). 

 

 

 The two-step analysis in this study can analyze a data that includes both continuous and 

categorical items, and the quantification in step 1 can be commonly used in the subsequent analyses (step 

2). By this common quantification, interpretation of results from analyses can be easily compared. The 

two-step analysis in this study can be expected to broaden the possibility of various analyses’ applicability 

to psychological data with continuous and categorical items, and to make it easier to compare results from 

various analyses. 
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Appendix 

 More explicit but rather complicated explanation of the quantification in Step 1 is as follows. 

 When 𝑠𝑠 − 1  quantifications 𝝎𝝎!
(!) , ⋯ , 𝝎𝝎!

(!!!)  have been calculated for 𝐻𝐻! , the next 

quantification 𝝎𝝎!
(!) can be calculated by setting the following equation 

𝑄𝑄!
! = 𝐻𝐻!𝝎𝝎!

! !
𝐻𝐻!𝝎𝝎!

! − 𝜆𝜆!
! 𝝎𝝎!

! ′𝝎𝝎!
! − 1  

−2𝜇𝜇!,!
! 𝝎𝝎!

! ′𝝎𝝎!
! − 0 − ⋯− 2𝜇𝜇!,!

!!! 𝝎𝝎!
(!!!)!𝝎𝝎!

! − 0  

We have 

𝜕𝜕𝑄𝑄!
!

𝜕𝜕𝝎𝝎!
(!) = 2𝐻𝐻!!𝐻𝐻!𝝎𝝎!

! − 2𝜆𝜆!
! 𝝎𝝎!

! − 2𝜇𝜇!,!
! 𝝎𝝎!

! − ⋯− 2𝜇𝜇!,!
!!! 𝝎𝝎!

!!!  

Hence, 𝝎𝝎!
(!), at that 𝐻𝐻!𝝎𝝎!

! ′ 𝐻𝐻!𝝎𝝎!
!  has a relative maximum under the constraint 
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𝑋𝑋! = 𝑥𝑥!!,⋯ , 𝑥𝑥!"
!
 is a column vector of values of 𝑛𝑛  individuals on variable 𝑗𝑗. A two-step method of 

PCA for categorical data is also used in MFA (Bécue−Bertau & Pagès, 2008). However, MFA uses only 

the first eigenvalue for scaling values. The two-step method in this study uses all eigenvalues to 

standardize all quantifications. Furthermore, in the two-step analysis proposed in this study, quantified 

variables might not be used just for PCA, but also for other analyses as common quantification. While 

some quantification methods, e.g., analysis by meet loss, 𝜎𝜎! 𝑋𝑋, 𝑌𝑌 , use iterative algorithm, the 

quantification in step 1 of the two-step analysis is obtained using eigenvalues and eigenvectors. Iterative 

algorithm might not converge, but eigenvalues and eigenvectors can be obtained from eigendecomposition 

of a real symmetric matrix by effective algorithm (Burden & Faires, 1997; Press, Teukolsky, Vetterling, & 

Flannery, 2007). 

 

 

 The two-step analysis in this study can analyze a data that includes both continuous and 

categorical items, and the quantification in step 1 can be commonly used in the subsequent analyses (step 

2). By this common quantification, interpretation of results from analyses can be easily compared. The 

two-step analysis in this study can be expected to broaden the possibility of various analyses’ applicability 

to psychological data with continuous and categorical items, and to make it easier to compare results from 

various analyses. 
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Appendix 

 More explicit but rather complicated explanation of the quantification in Step 1 is as follows. 

 When 𝑠𝑠 − 1  quantifications 𝝎𝝎!
(!) , ⋯ , 𝝎𝝎!

(!!!)  have been calculated for 𝐻𝐻! , the next 

quantification 𝝎𝝎!
(!) can be calculated by setting the following equation 

𝑄𝑄!
! = 𝐻𝐻!𝝎𝝎!

! !
𝐻𝐻!𝝎𝝎!

! − 𝜆𝜆!
! 𝝎𝝎!

! ′𝝎𝝎!
! − 1  

−2𝜇𝜇!,!
! 𝝎𝝎!

! ′𝝎𝝎!
! − 0 − ⋯− 2𝜇𝜇!,!

!!! 𝝎𝝎!
(!!!)!𝝎𝝎!

! − 0  

We have 

𝜕𝜕𝑄𝑄!
!

𝜕𝜕𝝎𝝎!
(!) = 2𝐻𝐻!!𝐻𝐻!𝝎𝝎!

! − 2𝜆𝜆!
! 𝝎𝝎!

! − 2𝜇𝜇!,!
! 𝝎𝝎!

! − ⋯− 2𝜇𝜇!,!
!!! 𝝎𝝎!

!!!  

Hence, 𝝎𝝎!
(!), at that 𝐻𝐻!𝝎𝝎!

! ′ 𝐻𝐻!𝝎𝝎!
!  has a relative maximum under the constraint 
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𝝎𝝎!
! !𝝎𝝎!

! = 1,     𝝎𝝎!
! !
𝝎𝝎!

! = 0, ⋯    , 𝝎𝝎!
(!!!)!𝝎𝝎!

! = 0, 

satisfies the equation 

𝐻𝐻!!𝐻𝐻!𝝎𝝎!
! = 𝜆𝜆!

! 𝝎𝝎!
! + 𝜇𝜇!,!

! 𝝎𝝎!
! + ⋯+ 𝜇𝜇!,!

!!! 𝝎𝝎!
!!!  

Multiplying 𝝎𝝎!
! ; 1 ≤ 𝑡𝑡 < 𝑠𝑠, to the above equation, we have 

𝝎𝝎!
! ′𝐻𝐻!!𝐻𝐻!𝝎𝝎!

! = 𝜆𝜆!
! 𝝎𝝎!

! !𝝎𝝎!
! + 𝜇𝜇!,!

! 𝝎𝝎!
! !𝝎𝝎!

! + ⋯+ 𝜇𝜇!,!
!!! 𝝎𝝎!

! ′𝝎𝝎!
!!!  

= 𝜇𝜇!,!
!  

Noticing  

𝝎𝝎!
! ′𝐻𝐻!!𝐻𝐻!𝝎𝝎!

! = 𝐻𝐻!!𝐻𝐻!𝝎𝝎!
(!) !

𝝎𝝎!
! = 𝜆𝜆!

(!)𝝎𝝎!
(!) !

𝝎𝝎!
! = 0, 

we have– 

𝜇𝜇!,!
! = 0. 

 Hence, we have 

𝐻𝐻!!𝐻𝐻!𝝎𝝎!
! = 𝜆𝜆!

! 𝝎𝝎!
! .                                                                                                                  (A1) 

In the case where some eigenvalues are equal to each other 

When 

𝜆𝜆!
(!) = 𝜆𝜆!

(!!!) = ⋯ = 𝜆𝜆!
!!! = 𝜆𝜆,                                                                      (A2) 

we have 

𝝎𝝎!
(!) ⋯𝝎𝝎!

(!!!)
𝜆𝜆 0

⋱
0 𝜆𝜆

𝝎𝝎!
(!) ⋯𝝎𝝎!

(!!!) !
= 𝜆𝜆 𝝎𝝎!

(!) ⋯𝝎𝝎!
(!!!) 𝝎𝝎!

(!) ⋯𝝎𝝎!
(!!!) !

. 

 Let 𝑇𝑇 be any orthogonal matrix of order 𝑢𝑢  by  𝑢𝑢, we have 

𝑇𝑇𝑇𝑇! =
1 0

⋱
0 1

. 

Hence, we have 

𝝎𝝎!
(!) ⋯𝝎𝝎!

(!!!)
𝜆𝜆 0

⋱
0 𝜆𝜆

𝝎𝝎!
(!) ⋯𝝎𝝎!

(!!!) !
 

= 𝜆𝜆 𝝎𝝎!
(!) ⋯𝝎𝝎!

(!!!) 𝑇𝑇𝑇𝑇′ 𝝎𝝎!
(!) ⋯𝝎𝝎!

(!!!) !
 

= 𝝎𝝎!
(!) ⋯𝝎𝝎!

(!!!) 𝑇𝑇
𝜆𝜆 0

⋱
0 𝜆𝜆

𝝎𝝎!
(!) ⋯𝝎𝝎!

(!!!) 𝑇𝑇
!
.                (𝐴𝐴3) 

 Equation A3 shows that for 𝜆𝜆!
(!)s in Equation A1, which are the same value 𝜆𝜆, i.e. which 

satisfy Equation A2, 𝝎𝝎!
(!)s can be determined under the restriction of orthogonal rotation in the space 

spanned by 𝝎𝝎!
(!), ⋯ ,𝝎𝝎!

(!!!). 
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