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Hierarchical Modeling for Bayesian Approach in 
Generalizability Theory

一般化可能性理論におけるベイズ的方法のための階層的モデル構成
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（日本女子大学人間社会学部心理学科）

［Abstract］A natural correspondence between generalizability theory and Bayesian data analysis has been 

observed. To conduct Bayesian data analyses, explicit stochastic models of generalizability theory were presented 

with hierarchical priors, which represent random effects, and algorithms of Markov chain Monte Carlo (MCMC) for 

Bayesian analysis were proposed. To obtain stable posterior distributions of variances, inverse-gamma distributions 

of variances were employed. The proposed algorithms treat one-facet and two-facet designs whose facets are 

assumed to be random effects. Successful applications of the proposed Bayesian methods to hypothetical data sets 

indicate the usefulness and importance of the proposed Bayesian approach in generalizability theory.
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Introduction

A natural correspondence between generalizability theory and Bayesian approach can be pointed out, 

and this paper presents examples of simple modeling of random facets (factors) in generalizability theory, 

based on which Bayesian approaches were successfully conducted using hierarchical modeling. Generaliz-

ability theory (G theory) consists of two studies, generalizability study (G study) and decision study (D 

study). Bayesian data analysis consists of three steps; setting up a full probability model, conditioning on 

observed data, and evaluation (Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin, 2014). G study corre-

sponds to setting up a full probability model and conditioning on observed data, and D study to evaluation. 

Hence, the Bayesian approach is natural to generalizability theory. 

Usually, G theory stands on variance decomposition, which is derived from an ANOVA model (Bren-

nan, 2001, 2011; Cardinet, Johnson, and Pini, 2010; Glas, 2012; Kreiter, 2010; LoPilato, Carter, and Wang,  

2014; Shavelson and Webb, 1991). For example, in cases of one-facet design, variance of Xti , a score of the 

t-th target on the i-th item, is decomposed as follows:

    σ X
2 =σα

2 +σ β
2 +σ e

2,  (1)
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where X
2σ  is the overall variance of scores, 2σα , variance due to targets, 2σ β , variance due to test items, and 

e
2σ , variance due to residuals. The decomposition corresponds to that of the sum of squares (SS) in ANO-

VA and expectations of SSs are derived (Kirk, 1995; Myers and Well, 2003; Winer, Brown, and Michels, 

1991). Based on these expectations, point estimates of variances are calculated. But, estimated variances by 

expectations of SSs can be negative (Cardinet, Johnson, and Pini, 2010).

On the other hand, Bayesian approaches need formulae of probability distributions of variances, other 

than formulae of point estimations of variances by expectations, and can keep variances within nonnegative 

values by prior distributions. In cases of random facets (factors), probability distributions of variances can 

be successfully treated by hierarchical models (Kruschke, 2011). In the following sections, models of 

one-facet and two-facet designs, whose facets are represented as random factors in ANOVA models, are 

presented and successful applications of Bayesian approach by MCMC are reported. The MCMC uses Me-

tropolis-within-Gibbs (Robert and Casella, 2010a, 2010b) or the component-wise version of the Metropo-

lis–Hastings algorithm (Gamerman and Lopes, 2006), which makes adaptive stage of MCMC simpler and 

calculations of samples from posterior distributions easier.

Models and Algorithms (G study)

This study treats one-facet and two-facet designs, where facets are random factors. As the simplest 

model, first consider a one-facet design.

One-facet design

According to ANOVA, we have

    Xti = µG +α t + βi + eti ,  (2)

where µG  is the grand mean, tα  and iβ  are effects of target t  and item i , respectively, and eti  is residu-

al. tα , iβ , and eti  are assumed to be random and independent of each other and to have normal distribu-

tions:

 N 0, ,t
2α σ( )α

 N 0, ,i
2β σ( )β

and

e N 0, ,ti e
2σ( )

Set

Xti =
1
ni
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i=1

ni
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1
ni
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ni

∑
i=1

ni

∑ ,

where ni  is the number of items.
Under the independence condition (Hogg, McKean, and Craig, 2005), we have
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(3)
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where V(Y) represents variance of Y. Compare (3) with (1). Although (1) shows the decomposition of vari-

ance simply as the sum of component variances, which corresponds to the decomposition of the sum of 

squares in ANOVA, (3) shows the decomposition of variance explicitly as linear combination of variances 

of random effects, each weighted by the inverse of the number of levels of each facet (factor). Varianc-

es   ,    , and    can be estimated by a Bayesian method with Markov chain Monte Carlo (MCMC).

A Bayesian method presupposes a stochastic model. From (2), we set

P Xti µG ,αt ,βi ,σα
2 ,σ β

2 ,σ e
2 ,( )=φ Xti − µG +αt +βi( ){ }/σ e( ) ,

where φ ( )Z0
 is the probability density function of the standard normal distribution. 

 Put
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Alcalá-Quintana and García-Pérez (2004) recommended a uniform distribution as a 

prior distribution of a position parameter. Kingdom and Prins (2010) used uniform 
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U −C,C  denotes a uniform distribution in −C,C ; C is set as sufficiently great so 

that a generated sample does not jump out of the range. In many cases, vague priors are 

reasonable (Lunn, Jackson, Best, Thomas, and Spiegelhalter, 2013, p. 82). 

Alcalá-Quintana and García-Pérez (2004) recommended a uniform distribution as a 

prior distribution of a position parameter. Kingdom and Prins (2010) used uniform 

priors limited to bounded regions to calculate the posterior distributions of the position 
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that a generated sample does not jump out of the range. In many cases, vague priors are 

reasonable (Lunn, Jackson, Best, Thomas, and Spiegelhalter, 2013, p. 82). 

Alcalá-Quintana and García-Pérez (2004) recommended a uniform distribution as a 

prior distribution of a position parameter. Kingdom and Prins (2010) used uniform 

priors limited to bounded regions to calculate the posterior distributions of the position 
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and scale parameters of PFs. 

 (5) and (6) represent 𝛼𝛼! and 𝛽𝛽! as random effects. Prior distributions of 𝜎𝜎!! 

and 𝜎𝜎!!  are set as inverse gamma distributions. Although a bounded uniform 

distribution is recommended as a noninformative prior for a variance parameter σ 

(Carlin and Louis, 2009; Gelman, 2006), in some cases, uniform prior distributions of 

variances make posterior distributions unstable (Okamoto, 2013). A gamma distribution 

is used as a conjugate prior distribution for the inverse of variance (Kruschke, 2011), 

and in this case, the distribution of variance is an inverse-gamma distribution. 

Parameters of inverse-gamma distributions are set to weakly reflect prior information. 

 Posterior distribution (4) can be estimated by the following 

Metropolis-within-Gibbs (Robert and Casella, 2010a, 2010b) or the component-wise 

version of the Metropolis–Hastings algorithm (Gamerman and Lopes, 2006). The 

algorithm uses normal proposal distributions. A proposed value for a parameter whose 

value is restricted to positive is constrained to positive by the prior distribution. Cycles 

of MCMC steps proceed as follows: 

Step 0. Set initial values 𝜇𝜇!
(!), 𝛼𝛼!

(!), 𝛽𝛽!
(!), 𝜎𝜎!

!(!), 𝜎𝜎!
!(!), 𝜎𝜎!

!(!), where 𝜇𝜇!
(!) 

and so on denote values at the 𝑠𝑠-th iteration. 

 Set 𝑠𝑠   ← 0. 
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various posterior distributions, on which D study will be conducted.  



日本女子大学 人間社会研究科紀要 第 22 号

158

 1 0  / 2 7  
 

 
 

 Calculate acceptance probability 𝑎𝑎 

  𝑎𝑎 = min 1,
! ⋯,!!!

!!! ,!,!!
! ! ,⋯ 𝑿𝑿 ! !!

! ! ;!,!!!
!   

! ⋯,!!!
!!! ,!!

! ! ,!!
! ! ,⋯ 𝑿𝑿 ! !;!!

! ! ,!!!
!   

 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! .  

Step 5. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!
!(!),𝜎𝜎!!

!  

 Calculate acceptance probability 𝑎𝑎 

  𝑎𝑎 = min 1,
! ⋯,!!

! !!! ,!,!!
!(!) 𝑿𝑿 ! !!

! ! ;!,!!!
!   

! ⋯,!!
! !!! ,!!

! ! ,!!
!(!) 𝑿𝑿 ! !;!!

! ! ,!!!
!   

 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! . 

 

Step 6. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!
!(!),𝜎𝜎!!

!  

 Calculate acceptance probability 𝑎𝑎 

  𝑎𝑎 = min 1,
! ⋯,!!

! !!! ,! 𝑿𝑿 ! !!
! ! ;!,!!!

!   

! ⋯,!!
! !!! ,!!

!(!) 𝑿𝑿 ! !;!!
! ! ,!!!

!   
 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! . 

 Step 7. Set 𝑠𝑠   ← 𝑠𝑠 + 1. 

If 𝑠𝑠 does not reach the number set as the total number of iterations in 

MCMC, return to step 1. 

 

 Using samples 𝜇𝜇!
(!) , 𝛼𝛼!

(!) , 𝛽𝛽!
(!) , 𝜎𝜎!

!(!) , 𝜎𝜎!
!(!) , and 𝜎𝜎!

!(!) , we can estimate 

various posterior distributions, on which D study will be conducted.  

If   does not reach the number set as the total number of iterations in MCMC, return to step 1.

Using samples       we can estimate various posterior dis-

tributions, on which D study will be conducted. 

Two-facet design

Let      be a score of target    on item    by observer   ; then according to ANOVA, we have

 1 1  / 2 7  
 

 
 

Two-facet design 

Let 𝑋𝑋!"#  be a score of target 𝑡𝑡  on item 𝑖𝑖  by observer 𝑜𝑜 ; then according to 

ANOVA, we have 

𝑋𝑋!"# = 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" + 𝑒𝑒!"# ,                        (7) 

where 𝜇𝜇!  is the grand mean, and 𝛼𝛼!, 𝛽𝛽!, and 𝛾𝛾! are main effects of target 𝑡𝑡, item 𝑖𝑖, 

and observer 𝑜𝑜. 𝛼𝛼𝛼𝛼 !",   𝛼𝛼𝛼𝛼 !", and 𝛽𝛽𝛽𝛽 !" are interaction effects of target 𝑡𝑡 by item 

𝑖𝑖, item 𝑖𝑖 by observer 𝑜𝑜, and target 𝑡𝑡 by observer 𝑜𝑜, respectively, and 𝑒𝑒!"# is residual. 

All effects are assumed to be independent of each other, and to have normal 

distributions: 

𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! ,     

𝑒𝑒!"#  ~  𝑁𝑁 0,𝜎𝜎!! . 

 Set  

𝑋𝑋!∙∙ =
1

𝑛𝑛!𝑛𝑛!
𝑋𝑋!"#

!!

!!!

!!

!!!

 

= 𝜇𝜇! + 𝛼𝛼! +
1
𝑛𝑛!

𝛽𝛽!

!!

!!!

+
1
𝑛𝑛!

𝛾𝛾!

!!

!!!

 

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1

𝑛𝑛!𝑛𝑛!
𝛽𝛽𝛽𝛽 !"

!!

!!!

!!

!!!

 

 (7)

where     is the grand mean, and               are main effects of target t, item i, and observer  .	
           are interaction effects of target t by item i, target t by observer o, and item i 

by observer o, respectively, and     is residual. All effects are assumed to be independent of each other, 

and to have normal distributions:

 1 1  / 2 7  
 

 
 

Two-facet design 

Let 𝑋𝑋!"#  be a score of target 𝑡𝑡  on item 𝑖𝑖  by observer 𝑜𝑜 ; then according to 

ANOVA, we have 

𝑋𝑋!"# = 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" + 𝑒𝑒!"# ,                        (7) 

where 𝜇𝜇!  is the grand mean, and 𝛼𝛼!, 𝛽𝛽!, and 𝛾𝛾! are main effects of target 𝑡𝑡, item 𝑖𝑖, 

and observer 𝑜𝑜. 𝛼𝛼𝛼𝛼 !",   𝛼𝛼𝛼𝛼 !", and 𝛽𝛽𝛽𝛽 !" are interaction effects of target 𝑡𝑡 by item 

𝑖𝑖, item 𝑖𝑖 by observer 𝑜𝑜, and target 𝑡𝑡 by observer 𝑜𝑜, respectively, and 𝑒𝑒!"# is residual. 

All effects are assumed to be independent of each other, and to have normal 

distributions: 

𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! ,     

𝑒𝑒!"#  ~  𝑁𝑁 0,𝜎𝜎!! . 

 Set  

𝑋𝑋!∙∙ =
1

𝑛𝑛!𝑛𝑛!
𝑋𝑋!"#

!!

!!!

!!

!!!

 

= 𝜇𝜇! + 𝛼𝛼! +
1
𝑛𝑛!

𝛽𝛽!

!!

!!!

+
1
𝑛𝑛!

𝛾𝛾!

!!

!!!

 

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1

𝑛𝑛!𝑛𝑛!
𝛽𝛽𝛽𝛽 !"

!!

!!!

!!

!!!

 

 Set 

 1 1  / 2 7  
 

 
 

Two-facet design 

Let 𝑋𝑋!"#  be a score of target 𝑡𝑡  on item 𝑖𝑖  by observer 𝑜𝑜 ; then according to 

ANOVA, we have 

𝑋𝑋!"# = 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" + 𝑒𝑒!"# ,                        (7) 

where 𝜇𝜇!  is the grand mean, and 𝛼𝛼!, 𝛽𝛽!, and 𝛾𝛾! are main effects of target 𝑡𝑡, item 𝑖𝑖, 

and observer 𝑜𝑜. 𝛼𝛼𝛼𝛼 !",   𝛼𝛼𝛼𝛼 !", and 𝛽𝛽𝛽𝛽 !" are interaction effects of target 𝑡𝑡 by item 

𝑖𝑖, item 𝑖𝑖 by observer 𝑜𝑜, and target 𝑡𝑡 by observer 𝑜𝑜, respectively, and 𝑒𝑒!"# is residual. 

All effects are assumed to be independent of each other, and to have normal 

distributions: 

𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! ,     

𝑒𝑒!"#  ~  𝑁𝑁 0,𝜎𝜎!! . 

 Set  

𝑋𝑋!∙∙ =
1

𝑛𝑛!𝑛𝑛!
𝑋𝑋!"#

!!

!!!

!!

!!!

 

= 𝜇𝜇! + 𝛼𝛼! +
1
𝑛𝑛!

𝛽𝛽!

!!

!!!

+
1
𝑛𝑛!

𝛾𝛾!

!!

!!!

 

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1

𝑛𝑛!𝑛𝑛!
𝛽𝛽𝛽𝛽 !"

!!

!!!

!!

!!!

 

 1 0  / 2 7  
 

 
 

 Calculate acceptance probability 𝑎𝑎 

  𝑎𝑎 = min 1,
! ⋯,!!!

!!! ,!,!!
! ! ,⋯ 𝑿𝑿 ! !!

! ! ;!,!!!
!   

! ⋯,!!!
!!! ,!!

! ! ,!!
! ! ,⋯ 𝑿𝑿 ! !;!!

! ! ,!!!
!   

 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! .  

Step 5. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!
!(!),𝜎𝜎!!

!  

 Calculate acceptance probability 𝑎𝑎 

  𝑎𝑎 = min 1,
! ⋯,!!

! !!! ,!,!!
!(!) 𝑿𝑿 ! !!

! ! ;!,!!!
!   

! ⋯,!!
! !!! ,!!

! ! ,!!
!(!) 𝑿𝑿 ! !;!!

! ! ,!!!
!   

 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! . 

 

Step 6. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!
!(!),𝜎𝜎!!

!  

 Calculate acceptance probability 𝑎𝑎 

  𝑎𝑎 = min 1,
! ⋯,!!

! !!! ,! 𝑿𝑿 ! !!
! ! ;!,!!!

!   

! ⋯,!!
! !!! ,!!

!(!) 𝑿𝑿 ! !;!!
! ! ,!!!

!   
 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! . 

 Step 7. Set 𝑠𝑠   ← 𝑠𝑠 + 1. 

If 𝑠𝑠 does not reach the number set as the total number of iterations in 

MCMC, return to step 1. 

 

 Using samples 𝜇𝜇!
(!) , 𝛼𝛼!

(!) , 𝛽𝛽!
(!) , 𝜎𝜎!

!(!) , 𝜎𝜎!
!(!) , and 𝜎𝜎!

!(!) , we can estimate 

various posterior distributions, on which D study will be conducted.  

 1 0  / 2 7  
 

 
 

 Calculate acceptance probability 𝑎𝑎 

  𝑎𝑎 = min 1,
! ⋯,!!!

!!! ,!,!!
! ! ,⋯ 𝑿𝑿 ! !!

! ! ;!,!!!
!   

! ⋯,!!!
!!! ,!!

! ! ,!!
! ! ,⋯ 𝑿𝑿 ! !;!!

! ! ,!!!
!   

 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! .  

Step 5. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!
!(!),𝜎𝜎!!

!  

 Calculate acceptance probability 𝑎𝑎 

  𝑎𝑎 = min 1,
! ⋯,!!

! !!! ,!,!!
!(!) 𝑿𝑿 ! !!

! ! ;!,!!!
!   

! ⋯,!!
! !!! ,!!

! ! ,!!
!(!) 𝑿𝑿 ! !;!!

! ! ,!!!
!   

 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! . 

 

Step 6. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!
!(!),𝜎𝜎!!

!  

 Calculate acceptance probability 𝑎𝑎 

  𝑎𝑎 = min 1,
! ⋯,!!

! !!! ,! 𝑿𝑿 ! !!
! ! ;!,!!!

!   

! ⋯,!!
! !!! ,!!

!(!) 𝑿𝑿 ! !;!!
! ! ,!!!

!   
 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! . 

 Step 7. Set 𝑠𝑠   ← 𝑠𝑠 + 1. 

If 𝑠𝑠 does not reach the number set as the total number of iterations in 

MCMC, return to step 1. 

 

 Using samples 𝜇𝜇!
(!) , 𝛼𝛼!

(!) , 𝛽𝛽!
(!) , 𝜎𝜎!

!(!) , 𝜎𝜎!
!(!) , and 𝜎𝜎!

!(!) , we can estimate 

various posterior distributions, on which D study will be conducted.  

 1 1  / 2 7  
 

 
 

Two-facet design 

Let 𝑋𝑋!"#  be a score of target 𝑡𝑡  on item 𝑖𝑖  by observer 𝑜𝑜 ; then according to 

ANOVA, we have 

𝑋𝑋!"# = 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" + 𝑒𝑒!"# ,                        (7) 

where 𝜇𝜇!  is the grand mean, and 𝛼𝛼!, 𝛽𝛽!, and 𝛾𝛾! are main effects of target 𝑡𝑡, item 𝑖𝑖, 

and observer 𝑜𝑜. 𝛼𝛼𝛼𝛼 !",   𝛼𝛼𝛼𝛼 !", and 𝛽𝛽𝛽𝛽 !" are interaction effects of target 𝑡𝑡 by item 

𝑖𝑖, item 𝑖𝑖 by observer 𝑜𝑜, and target 𝑡𝑡 by observer 𝑜𝑜, respectively, and 𝑒𝑒!"# is residual. 

All effects are assumed to be independent of each other, and to have normal 

distributions: 

𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! ,     

𝑒𝑒!"#  ~  𝑁𝑁 0,𝜎𝜎!! . 

 Set  

𝑋𝑋!∙∙ =
1

𝑛𝑛!𝑛𝑛!
𝑋𝑋!"#

!!

!!!

!!

!!!

 

= 𝜇𝜇! + 𝛼𝛼! +
1
𝑛𝑛!

𝛽𝛽!

!!

!!!

+
1
𝑛𝑛!

𝛾𝛾!

!!

!!!

 

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1

𝑛𝑛!𝑛𝑛!
𝛽𝛽𝛽𝛽 !"

!!

!!!

!!

!!!

 

 1 1  / 2 7  
 

 
 

Two-facet design 

Let 𝑋𝑋!"#  be a score of target 𝑡𝑡  on item 𝑖𝑖  by observer 𝑜𝑜 ; then according to 

ANOVA, we have 

𝑋𝑋!"# = 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" + 𝑒𝑒!"# ,                        (7) 

where 𝜇𝜇!  is the grand mean, and 𝛼𝛼!, 𝛽𝛽!, and 𝛾𝛾! are main effects of target 𝑡𝑡, item 𝑖𝑖, 

and observer 𝑜𝑜. 𝛼𝛼𝛼𝛼 !",   𝛼𝛼𝛼𝛼 !", and 𝛽𝛽𝛽𝛽 !" are interaction effects of target 𝑡𝑡 by item 

𝑖𝑖, item 𝑖𝑖 by observer 𝑜𝑜, and target 𝑡𝑡 by observer 𝑜𝑜, respectively, and 𝑒𝑒!"# is residual. 

All effects are assumed to be independent of each other, and to have normal 

distributions: 

𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! ,     

𝑒𝑒!"#  ~  𝑁𝑁 0,𝜎𝜎!! . 

 Set  

𝑋𝑋!∙∙ =
1

𝑛𝑛!𝑛𝑛!
𝑋𝑋!"#

!!

!!!

!!

!!!

 

= 𝜇𝜇! + 𝛼𝛼! +
1
𝑛𝑛!

𝛽𝛽!

!!

!!!

+
1
𝑛𝑛!

𝛾𝛾!

!!

!!!

 

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1

𝑛𝑛!𝑛𝑛!
𝛽𝛽𝛽𝛽 !"

!!

!!!

!!

!!!

 

 1 1  / 2 7  
 

 
 

Two-facet design 

Let 𝑋𝑋!"#  be a score of target 𝑡𝑡  on item 𝑖𝑖  by observer 𝑜𝑜 ; then according to 

ANOVA, we have 

𝑋𝑋!"# = 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" + 𝑒𝑒!"# ,                        (7) 

where 𝜇𝜇!  is the grand mean, and 𝛼𝛼!, 𝛽𝛽!, and 𝛾𝛾! are main effects of target 𝑡𝑡, item 𝑖𝑖, 

and observer 𝑜𝑜. 𝛼𝛼𝛼𝛼 !",   𝛼𝛼𝛼𝛼 !", and 𝛽𝛽𝛽𝛽 !" are interaction effects of target 𝑡𝑡 by item 

𝑖𝑖, item 𝑖𝑖 by observer 𝑜𝑜, and target 𝑡𝑡 by observer 𝑜𝑜, respectively, and 𝑒𝑒!"# is residual. 

All effects are assumed to be independent of each other, and to have normal 

distributions: 

𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! ,     

𝑒𝑒!"#  ~  𝑁𝑁 0,𝜎𝜎!! . 

 Set  

𝑋𝑋!∙∙ =
1

𝑛𝑛!𝑛𝑛!
𝑋𝑋!"#

!!

!!!

!!

!!!

 

= 𝜇𝜇! + 𝛼𝛼! +
1
𝑛𝑛!

𝛽𝛽!

!!

!!!

+
1
𝑛𝑛!

𝛾𝛾!

!!

!!!

 

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1

𝑛𝑛!𝑛𝑛!
𝛽𝛽𝛽𝛽 !"

!!

!!!

!!

!!!

 

 1 1  / 2 7  
 

 
 

Two-facet design 

Let 𝑋𝑋!"#  be a score of target 𝑡𝑡  on item 𝑖𝑖  by observer 𝑜𝑜 ; then according to 

ANOVA, we have 

𝑋𝑋!"# = 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" + 𝑒𝑒!"# ,                        (7) 

where 𝜇𝜇!  is the grand mean, and 𝛼𝛼!, 𝛽𝛽!, and 𝛾𝛾! are main effects of target 𝑡𝑡, item 𝑖𝑖, 

and observer 𝑜𝑜. 𝛼𝛼𝛼𝛼 !",   𝛼𝛼𝛼𝛼 !", and 𝛽𝛽𝛽𝛽 !" are interaction effects of target 𝑡𝑡 by item 

𝑖𝑖, item 𝑖𝑖 by observer 𝑜𝑜, and target 𝑡𝑡 by observer 𝑜𝑜, respectively, and 𝑒𝑒!"# is residual. 

All effects are assumed to be independent of each other, and to have normal 

distributions: 

𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! ,     

𝑒𝑒!"#  ~  𝑁𝑁 0,𝜎𝜎!! . 

 Set  

𝑋𝑋!∙∙ =
1

𝑛𝑛!𝑛𝑛!
𝑋𝑋!"#

!!

!!!

!!

!!!

 

= 𝜇𝜇! + 𝛼𝛼! +
1
𝑛𝑛!

𝛽𝛽!

!!

!!!

+
1
𝑛𝑛!

𝛾𝛾!

!!

!!!

 

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1

𝑛𝑛!𝑛𝑛!
𝛽𝛽𝛽𝛽 !"

!!

!!!

!!

!!!

 

 1 1  / 2 7  
 

 
 

Two-facet design 

Let 𝑋𝑋!"#  be a score of target 𝑡𝑡  on item 𝑖𝑖  by observer 𝑜𝑜 ; then according to 

ANOVA, we have 

𝑋𝑋!"# = 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" + 𝑒𝑒!"# ,                        (7) 

where 𝜇𝜇!  is the grand mean, and 𝛼𝛼!, 𝛽𝛽!, and 𝛾𝛾! are main effects of target 𝑡𝑡, item 𝑖𝑖, 

and observer 𝑜𝑜. 𝛼𝛼𝛼𝛼 !",   𝛼𝛼𝛼𝛼 !", and 𝛽𝛽𝛽𝛽 !" are interaction effects of target 𝑡𝑡 by item 

𝑖𝑖, item 𝑖𝑖 by observer 𝑜𝑜, and target 𝑡𝑡 by observer 𝑜𝑜, respectively, and 𝑒𝑒!"# is residual. 

All effects are assumed to be independent of each other, and to have normal 

distributions: 

𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! ,     

𝑒𝑒!"#  ~  𝑁𝑁 0,𝜎𝜎!! . 

 Set  

𝑋𝑋!∙∙ =
1

𝑛𝑛!𝑛𝑛!
𝑋𝑋!"#

!!

!!!

!!

!!!

 

= 𝜇𝜇! + 𝛼𝛼! +
1
𝑛𝑛!

𝛽𝛽!

!!

!!!

+
1
𝑛𝑛!

𝛾𝛾!

!!

!!!

 

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1

𝑛𝑛!𝑛𝑛!
𝛽𝛽𝛽𝛽 !"

!!

!!!

!!

!!!

 

 1 1  / 2 7  
 

 
 

Two-facet design 

Let 𝑋𝑋!"#  be a score of target 𝑡𝑡  on item 𝑖𝑖  by observer 𝑜𝑜 ; then according to 

ANOVA, we have 

𝑋𝑋!"# = 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" + 𝑒𝑒!"# ,                        (7) 

where 𝜇𝜇!  is the grand mean, and 𝛼𝛼!, 𝛽𝛽!, and 𝛾𝛾! are main effects of target 𝑡𝑡, item 𝑖𝑖, 

and observer 𝑜𝑜. 𝛼𝛼𝛼𝛼 !",   𝛼𝛼𝛼𝛼 !", and 𝛽𝛽𝛽𝛽 !" are interaction effects of target 𝑡𝑡 by item 

𝑖𝑖, item 𝑖𝑖 by observer 𝑜𝑜, and target 𝑡𝑡 by observer 𝑜𝑜, respectively, and 𝑒𝑒!"# is residual. 

All effects are assumed to be independent of each other, and to have normal 

distributions: 

𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! ,     

𝑒𝑒!"#  ~  𝑁𝑁 0,𝜎𝜎!! . 

 Set  

𝑋𝑋!∙∙ =
1

𝑛𝑛!𝑛𝑛!
𝑋𝑋!"#

!!

!!!

!!

!!!

 

= 𝜇𝜇! + 𝛼𝛼! +
1
𝑛𝑛!

𝛽𝛽!

!!

!!!

+
1
𝑛𝑛!

𝛾𝛾!

!!

!!!

 

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1

𝑛𝑛!𝑛𝑛!
𝛽𝛽𝛽𝛽 !"

!!

!!!

!!

!!!

 

 1 1  / 2 7  
 

 
 

Two-facet design 

Let 𝑋𝑋!"#  be a score of target 𝑡𝑡  on item 𝑖𝑖  by observer 𝑜𝑜 ; then according to 

ANOVA, we have 

𝑋𝑋!"# = 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" + 𝑒𝑒!"# ,                        (7) 

where 𝜇𝜇!  is the grand mean, and 𝛼𝛼!, 𝛽𝛽!, and 𝛾𝛾! are main effects of target 𝑡𝑡, item 𝑖𝑖, 

and observer 𝑜𝑜. 𝛼𝛼𝛼𝛼 !",   𝛼𝛼𝛼𝛼 !", and 𝛽𝛽𝛽𝛽 !" are interaction effects of target 𝑡𝑡 by item 

𝑖𝑖, item 𝑖𝑖 by observer 𝑜𝑜, and target 𝑡𝑡 by observer 𝑜𝑜, respectively, and 𝑒𝑒!"# is residual. 

All effects are assumed to be independent of each other, and to have normal 

distributions: 

𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! ,     

𝑒𝑒!"#  ~  𝑁𝑁 0,𝜎𝜎!! . 

 Set  

𝑋𝑋!∙∙ =
1

𝑛𝑛!𝑛𝑛!
𝑋𝑋!"#

!!

!!!

!!

!!!

 

= 𝜇𝜇! + 𝛼𝛼! +
1
𝑛𝑛!

𝛽𝛽!

!!

!!!

+
1
𝑛𝑛!

𝛾𝛾!

!!

!!!

 

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1
𝑛𝑛!

𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1

𝑛𝑛!𝑛𝑛!
𝛽𝛽𝛽𝛽 !"

!!

!!!

!!

!!!

 

 1 1  / 2 7  
 

 
 

Two-facet design 

Let 𝑋𝑋!"#  be a score of target 𝑡𝑡  on item 𝑖𝑖  by observer 𝑜𝑜 ; then according to 

ANOVA, we have 

𝑋𝑋!"# = 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" + 𝑒𝑒!"# ,                        (7) 

where 𝜇𝜇!  is the grand mean, and 𝛼𝛼!, 𝛽𝛽!, and 𝛾𝛾! are main effects of target 𝑡𝑡, item 𝑖𝑖, 
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𝑖𝑖, item 𝑖𝑖 by observer 𝑜𝑜, and target 𝑡𝑡 by observer 𝑜𝑜, respectively, and 𝑒𝑒!"# is residual. 
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 Compare (8) with (1). Decomposition of the variance in (8) is explicitly 

represented as a linear combination of variances of random effects, each weighted by 

the inverse of the number of levels of each facet. The variances can be estimated by a 

Bayesian method with MCMC. 

From (7), we have 
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= 𝜙𝜙 𝑋𝑋!"# − 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" 𝜎𝜎! . 

Put 

𝜶𝜶 = 𝛼𝛼!,⋯ ,𝛼𝛼!! , 𝜷𝜷 = 𝛽𝛽!,⋯ ,𝛽𝛽!! , 𝜸𝜸 = 𝛾𝛾!,⋯ , 𝛾𝛾!! , 

𝜶𝜶𝜶𝜶 = 𝛼𝛼𝛼𝛼 !!,⋯ , 𝛼𝛼𝛼𝛼 !!!! , 𝜶𝜶𝜶𝜶 = 𝛼𝛼𝛼𝛼 !!,⋯ , 𝛼𝛼𝛼𝛼 !!!! , 
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 Compare (8) with (1). Decomposition of the variance in (8) is explicitly 

represented as a linear combination of variances of random effects, each weighted by 

the inverse of the number of levels of each facet. The variances can be estimated by a 

Bayesian method with MCMC. 

From (7), we have 

𝑃𝑃 𝑋𝑋!"# 𝜇𝜇! ,𝛼𝛼! ,𝛽𝛽! , 𝛾𝛾! , 𝛼𝛼𝛼𝛼 !" , 𝛼𝛼𝛼𝛼 !" , 𝛽𝛽𝛽𝛽 !" ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝜙𝜙 𝑋𝑋!"# − 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" 𝜎𝜎! . 

Put 

𝜶𝜶 = 𝛼𝛼!,⋯ ,𝛼𝛼!! , 𝜷𝜷 = 𝛽𝛽!,⋯ ,𝛽𝛽!! , 𝜸𝜸 = 𝛾𝛾!,⋯ , 𝛾𝛾!! , 

𝜶𝜶𝜶𝜶 = 𝛼𝛼𝛼𝛼 !!,⋯ , 𝛼𝛼𝛼𝛼 !!!! , 𝜶𝜶𝜶𝜶 = 𝛼𝛼𝛼𝛼 !!,⋯ , 𝛼𝛼𝛼𝛼 !!!! , 

	 Put
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+
1

𝑛𝑛!𝑛𝑛!
𝑒𝑒!"#

!!

!!!

!!

!!!

, 

where 𝑛𝑛! is the number of observers. Under the independence condition, we have 

𝑉𝑉 𝑋𝑋!∙∙ = 𝑉𝑉 𝛼𝛼! +
1
𝑛𝑛!!

𝑉𝑉 𝛽𝛽!

!!

!!!

+
1
𝑛𝑛!!

𝑉𝑉 𝛾𝛾!

!!

!!!

+
1
𝑛𝑛!!

𝑉𝑉 𝛼𝛼𝛼𝛼 !"

!!

!!!

 

+
1
𝑛𝑛!!

𝑉𝑉 𝛼𝛼𝛼𝛼 !"

!!

!!!

+
1

𝑛𝑛!!𝑛𝑛!!
𝑉𝑉 𝛽𝛽𝛽𝛽 !"

!!

!!!

!!

!!!

 

+
1

𝑛𝑛!!𝑛𝑛!!
𝑉𝑉 𝑒𝑒!"#

!!

!!!

!!

!!!

             

= 𝜎𝜎!! +
𝜎𝜎!!

𝑛𝑛!
+
𝜎𝜎!!

𝑛𝑛!
+
𝜎𝜎!"!

𝑛𝑛!
+
𝜎𝜎!"!

𝑛𝑛!
+
𝜎𝜎!"!

𝑛𝑛!𝑛𝑛!
+

𝜎𝜎!!

𝑛𝑛!𝑛𝑛!
                                                                        (8) 

 Compare (8) with (1). Decomposition of the variance in (8) is explicitly 

represented as a linear combination of variances of random effects, each weighted by 

the inverse of the number of levels of each facet. The variances can be estimated by a 

Bayesian method with MCMC. 

From (7), we have 

𝑃𝑃 𝑋𝑋!"# 𝜇𝜇! ,𝛼𝛼! ,𝛽𝛽! , 𝛾𝛾! , 𝛼𝛼𝛼𝛼 !" , 𝛼𝛼𝛼𝛼 !" , 𝛽𝛽𝛽𝛽 !" ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝜙𝜙 𝑋𝑋!"# − 𝜇𝜇! + 𝛼𝛼! + 𝛽𝛽! + 𝛾𝛾! + 𝛼𝛼𝛼𝛼 !" + 𝛼𝛼𝛼𝛼 !" + 𝛽𝛽𝛽𝛽 !" 𝜎𝜎! . 

Put 

𝜶𝜶 = 𝛼𝛼!,⋯ ,𝛼𝛼!! , 𝜷𝜷 = 𝛽𝛽!,⋯ ,𝛽𝛽!! , 𝜸𝜸 = 𝛾𝛾!,⋯ , 𝛾𝛾!! , 

𝜶𝜶𝜶𝜶 = 𝛼𝛼𝛼𝛼 !!,⋯ , 𝛼𝛼𝛼𝛼 !!!! , 𝜶𝜶𝜶𝜶 = 𝛼𝛼𝛼𝛼 !!,⋯ , 𝛼𝛼𝛼𝛼 !!!! , 
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𝜷𝜷𝜷𝜷 = 𝛽𝛽𝛽𝛽 !!,⋯ , 𝛽𝛽𝛽𝛽 !!!! , and 𝑿𝑿 = 𝑋𝑋!!!,⋯ ,𝑋𝑋!!!!!! , 

then we have the posterior distribution 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! 𝑿𝑿  

∝ 𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

        ×𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! ,                                      (9) 

where 

𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝑋𝑋!"# 𝜇𝜇! ,𝛼𝛼! ,𝛽𝛽! , 𝛾𝛾! , 𝛼𝛼𝛼𝛼 !" , 𝛼𝛼𝛼𝛼 !" , 𝛽𝛽𝛽𝛽 !" ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!
!!

!!!

!!

!!!

!!

!!!

. 

  Set the following hierarchical prior (Kruschke, 2011) 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝜇𝜇! 𝑃𝑃 𝛼𝛼! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛽𝛽! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛾𝛾! 𝜎𝜎!!
!!

!!!

 

× 𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛽𝛽𝛽𝛽 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

 

×𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!! , 

where 

𝜇𝜇!   ~  𝑈𝑈 −𝐶𝐶,𝐶𝐶 , 𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 

𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 

then we have the posterior distribution

 (9)
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𝜷𝜷𝜷𝜷 = 𝛽𝛽𝛽𝛽 !!,⋯ , 𝛽𝛽𝛽𝛽 !!!! , and 𝑿𝑿 = 𝑋𝑋!!!,⋯ ,𝑋𝑋!!!!!! , 

then we have the posterior distribution 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! 𝑿𝑿  

∝ 𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

        ×𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! ,                                      (9) 

where 

𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝑋𝑋!"# 𝜇𝜇! ,𝛼𝛼! ,𝛽𝛽! , 𝛾𝛾! , 𝛼𝛼𝛼𝛼 !" , 𝛼𝛼𝛼𝛼 !" , 𝛽𝛽𝛽𝛽 !" ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!
!!

!!!

!!

!!!

!!

!!!

. 

  Set the following hierarchical prior (Kruschke, 2011) 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝜇𝜇! 𝑃𝑃 𝛼𝛼! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛽𝛽! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛾𝛾! 𝜎𝜎!!
!!

!!!

 

× 𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛽𝛽𝛽𝛽 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

 

×𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!! , 

where 

𝜇𝜇!   ~  𝑈𝑈 −𝐶𝐶,𝐶𝐶 , 𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 

𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 

where
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𝜷𝜷𝜷𝜷 = 𝛽𝛽𝛽𝛽 !!,⋯ , 𝛽𝛽𝛽𝛽 !!!! , and 𝑿𝑿 = 𝑋𝑋!!!,⋯ ,𝑋𝑋!!!!!! , 

then we have the posterior distribution 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! 𝑿𝑿  

∝ 𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

        ×𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! ,                                      (9) 

where 

𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝑋𝑋!"# 𝜇𝜇! ,𝛼𝛼! ,𝛽𝛽! , 𝛾𝛾! , 𝛼𝛼𝛼𝛼 !" , 𝛼𝛼𝛼𝛼 !" , 𝛽𝛽𝛽𝛽 !" ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!
!!

!!!

!!

!!!

!!

!!!

. 

  Set the following hierarchical prior (Kruschke, 2011) 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝜇𝜇! 𝑃𝑃 𝛼𝛼! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛽𝛽! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛾𝛾! 𝜎𝜎!!
!!

!!!

 

× 𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛽𝛽𝛽𝛽 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

 

×𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!! , 

where 

𝜇𝜇!   ~  𝑈𝑈 −𝐶𝐶,𝐶𝐶 , 𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 

𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 
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 1 3  / 2 7  
 

 
 

𝜷𝜷𝜷𝜷 = 𝛽𝛽𝛽𝛽 !!,⋯ , 𝛽𝛽𝛽𝛽 !!!! , and 𝑿𝑿 = 𝑋𝑋!!!,⋯ ,𝑋𝑋!!!!!! , 

then we have the posterior distribution 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! 𝑿𝑿  

∝ 𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

        ×𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! ,                                      (9) 

where 

𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝑋𝑋!"# 𝜇𝜇! ,𝛼𝛼! ,𝛽𝛽! , 𝛾𝛾! , 𝛼𝛼𝛼𝛼 !" , 𝛼𝛼𝛼𝛼 !" , 𝛽𝛽𝛽𝛽 !" ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!
!!

!!!

!!

!!!

!!

!!!

. 

  Set the following hierarchical prior (Kruschke, 2011) 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝜇𝜇! 𝑃𝑃 𝛼𝛼! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛽𝛽! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛾𝛾! 𝜎𝜎!!
!!

!!!

 

× 𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛽𝛽𝛽𝛽 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

 

×𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!! , 

where 

𝜇𝜇!   ~  𝑈𝑈 −𝐶𝐶,𝐶𝐶 , 𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 

𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 

Set the following hierarchical prior (Kruschke, 2011)

 1 3  / 2 7  
 

 
 

𝜷𝜷𝜷𝜷 = 𝛽𝛽𝛽𝛽 !!,⋯ , 𝛽𝛽𝛽𝛽 !!!! , and 𝑿𝑿 = 𝑋𝑋!!!,⋯ ,𝑋𝑋!!!!!! , 

then we have the posterior distribution 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! 𝑿𝑿  

∝ 𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

        ×𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! ,                                      (9) 

where 

𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝑋𝑋!"# 𝜇𝜇! ,𝛼𝛼! ,𝛽𝛽! , 𝛾𝛾! , 𝛼𝛼𝛼𝛼 !" , 𝛼𝛼𝛼𝛼 !" , 𝛽𝛽𝛽𝛽 !" ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!
!!

!!!

!!

!!!

!!

!!!

. 

  Set the following hierarchical prior (Kruschke, 2011) 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝜇𝜇! 𝑃𝑃 𝛼𝛼! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛽𝛽! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛾𝛾! 𝜎𝜎!!
!!

!!!

 

× 𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛽𝛽𝛽𝛽 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

 

×𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!! , 

where 

𝜇𝜇!   ~  𝑈𝑈 −𝐶𝐶,𝐶𝐶 , 𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 

𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 

where

 1 3  / 2 7  
 

 
 

𝜷𝜷𝜷𝜷 = 𝛽𝛽𝛽𝛽 !!,⋯ , 𝛽𝛽𝛽𝛽 !!!! , and 𝑿𝑿 = 𝑋𝑋!!!,⋯ ,𝑋𝑋!!!!!! , 

then we have the posterior distribution 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! 𝑿𝑿  

∝ 𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

        ×𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!! ,                                      (9) 

where 

𝑃𝑃 𝑿𝑿 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝑋𝑋!"# 𝜇𝜇! ,𝛼𝛼! ,𝛽𝛽! , 𝛾𝛾! , 𝛼𝛼𝛼𝛼 !" , 𝛼𝛼𝛼𝛼 !" , 𝛽𝛽𝛽𝛽 !" ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!
!!

!!!

!!

!!!

!!

!!!

. 

  Set the following hierarchical prior (Kruschke, 2011) 

𝑃𝑃 𝜇𝜇! ,𝜶𝜶,𝜷𝜷,𝜸𝜸, 𝜶𝜶𝜶𝜶 , 𝜶𝜶𝜶𝜶 , 𝜷𝜷𝜷𝜷 ,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!!,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!"! ,𝜎𝜎!!  

= 𝑃𝑃 𝜇𝜇! 𝑃𝑃 𝛼𝛼! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛽𝛽! 𝜎𝜎!!
!!

!!!

𝑃𝑃 𝛾𝛾! 𝜎𝜎!!
!!

!!!

 

× 𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛼𝛼𝛼𝛼 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

𝑃𝑃 𝛽𝛽𝛽𝛽 !" 𝜎𝜎!"!
!!

!!!

!!

!!!

 

×𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!"! 𝑃𝑃 𝜎𝜎!! , 

where 

𝜇𝜇!   ~  𝑈𝑈 −𝐶𝐶,𝐶𝐶 , 𝛼𝛼!  ~  𝑁𝑁 0,𝜎𝜎!! , 𝛽𝛽!   ~  𝑁𝑁 0,𝜎𝜎!! , 𝛾𝛾!  ~  𝑁𝑁 0,𝜎𝜎!! , 

𝛼𝛼𝛼𝛼 !"   ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛼𝛼𝛼𝛼 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 𝛽𝛽𝛽𝛽 !"  ~  𝑁𝑁 0,𝜎𝜎!"! , 

𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 

 1 4  / 2 7  
 

 
 

𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! , 𝜎𝜎!"!   ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎!" , 𝑏𝑏!" , 

    𝜎𝜎!"!   ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎!" , 𝑏𝑏!" , 𝜎𝜎!"!   ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎!" , 𝑏𝑏!" , 

𝜎𝜎!!  ~  𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎! , 𝑏𝑏! . 

These hierarchical priors are selected for the same reason as in one-facet design. 

 Posterior distribution (9) can be estimated by essentially the same algorithm as 

one-facet design. In the following, the algorithm is presented in a concise way. 

Acceptance probabilities are not presented explicitly, because their expressions can be 

inferred easily by comparison with those of one-facet design. 

Step 0. Set initial values 𝜇𝜇!
(!), 𝛼𝛼!

(!), 𝛽𝛽!
(!), 𝛾𝛾!

(!), 𝛼𝛼𝛼𝛼 !"
(!), 𝛼𝛼𝛼𝛼 !"
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!(!) , 𝜎𝜎!"
!(!) , 𝜎𝜎!"

!(!) , 𝜎𝜎!
!(!) , where 𝜇𝜇!

(!)  and so on 

denote values at the 𝑠𝑠-th iteration. 

 Set 𝑠𝑠   ← 0. 

Step 1. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜇𝜇!
(!),𝜎𝜎!!

! . 

 Calculate acceptance probability 𝑎𝑎. 

Set 𝜇𝜇!
(!!!)   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜇𝜇!

(!!!)   ← 𝜇𝜇!
(!). 

 Step 2. Repeat steps 2a to 2c for 𝑡𝑡 = 1  to  𝑛𝑛!. 

2a. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝛼𝛼!
(!),𝜎𝜎!"! . 

2b. Calculate acceptance probability 𝑎𝑎. 

These hierarchical priors are selected for the same reason as in one-facet design.

Posterior distribution (9) can be estimated by essentially the same algorithm as one-facet design. In 

the following, the algorithm is presented in a concise way. Acceptance probabilities are not presented ex-

plicitly, because their expressions can be inferred easily by comparison with those of one-facet design.
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2c. Set 𝛼𝛼!
!!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝛼𝛼!

!!!   ← 𝛼𝛼!
! .  

 Step 3. Repeat steps 3a to 3c for 𝑖𝑖 = 1  to  𝑛𝑛!. 

3a. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝛽𝛽!
(!),𝜎𝜎!"! . 

3b. Calculate acceptance probability 𝑎𝑎. 

3c. Set 𝛽𝛽!
!!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝛽𝛽!

!!!   ← 𝛽𝛽!
! .  

 Step 4. Repeat steps 4a to 4c for o = 1  to  𝑛𝑛!. 

4a. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝛾𝛾!
(!),𝜎𝜎!"! . 

4b. Calculate acceptance probability 𝑎𝑎. 

4c. Set 𝛾𝛾!
!!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝛾𝛾!

!!!   ← 𝛾𝛾!
! .  

 Step 5. Repeat steps 5a to 5c for 𝑡𝑡 = 1  to  𝑛𝑛!. 

Repeat steps 5a to 5c for 𝑖𝑖 = 1  to  𝑛𝑛!. 

5a. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝛼𝛼𝛼𝛼 !"
(!),𝜎𝜎!"#! . 

5b. Calculate acceptance probability 𝑎𝑎. 

5c. Set 𝛼𝛼𝛼𝛼 !"
(!!!)   ← 𝑦𝑦 with probability 𝑎𝑎;  

otherwise set 𝛼𝛼𝛼𝛼 !"
(!!!)   ← 𝛼𝛼𝛼𝛼 !"

(!).  

 Step 6. Repeat steps 6a to 5c for 𝑡𝑡 = 1  to  𝑛𝑛!. 

Repeat steps 6a to 5c for o = 1  to  𝑛𝑛!. 

6a. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝛼𝛼𝛼𝛼 !"
(!),𝜎𝜎!"#! . 
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6b. Calculate acceptance probability 𝑎𝑎. 

6c. Set 𝛼𝛼𝛼𝛼 !"
(!!!)   ← 𝑦𝑦 with probability 𝑎𝑎;  

otherwise set 𝛼𝛼𝛼𝛼 !"
(!!!)   ← 𝛼𝛼𝛼𝛼 !"

(!).  

 Step 7. Repeat steps 7a to 7c for i = 1  to  𝑛𝑛!. 

Repeat steps 7a to 7c for o = 1  to  𝑛𝑛!. 

7a. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝛽𝛽𝛽𝛽 !"
(!),𝜎𝜎!"#! . 

7b. Calculate acceptance probability 𝑎𝑎. 

7c. Set 𝛽𝛽𝛽𝛽 !"
(!!!)   ← 𝑦𝑦 with probability 𝑎𝑎;  

otherwise set 𝛽𝛽𝛽𝛽 !"
(!!!)   ← 𝛽𝛽𝛽𝛽 !"

(!).  

Step 8. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!
!(!),𝜎𝜎!!

!  

 Calculate acceptance probability 𝑎𝑎. 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! .  

Step 9. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!
!(!),𝜎𝜎!!

!  

 Calculate acceptance probability 𝑎𝑎. 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! .  

Step 10. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!
!(!),𝜎𝜎!!

!  

 Calculate acceptance probability 𝑎𝑎. 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! . 
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 Step 11. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!"
!(!),𝜎𝜎!!"

! . 

Calculate acceptance probability 𝑎𝑎. 

Set 𝜎𝜎!"
!(!!!)   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!"

!(!!!)   ← 𝜎𝜎!"
!(!).  

 Step 12. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!"
!(!),𝜎𝜎!!"

! . 

Calculate acceptance probability 𝑎𝑎. 

Set 𝜎𝜎!"
!(!!!)   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!"

!(!!!)   ← 𝜎𝜎!"
!(!).  

 Step 13. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!"
!(!),𝜎𝜎!!"

! . 

Calculate acceptance probability 𝑎𝑎. 

Set 𝜎𝜎!"
!(!!!)   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!"

!(!!!)   ← 𝜎𝜎!"
!(!).  

Step 14. Draw a sample 𝑦𝑦  ~  𝑁𝑁 𝜎𝜎!
!(!),𝜎𝜎!!

!  

 Calculate acceptance probability 𝑎𝑎. 

Set 𝜎𝜎!
! !!!   ← 𝑦𝑦 with probability 𝑎𝑎; otherwise set 𝜎𝜎!

! !!!   ← 𝜎𝜎!
! ! . 

 Step 15. Set 𝑠𝑠   ← 𝑠𝑠 + 1. 

If 𝑠𝑠 does not reach the number set as the total number of iterations in 

MCMC, return to step 1. 

 

 Using samples 𝜇𝜇!
(!), 𝛼𝛼!

(!), 𝛽𝛽!
(!), 𝛾𝛾!

(!), 𝛼𝛼𝛼𝛼 !"
(!), 𝛼𝛼𝛼𝛼 !"

(!), 𝛽𝛽𝛽𝛽 !"
(!), 𝜎𝜎!

!(!), 𝜎𝜎!
!(!), 

𝜎𝜎!
!(!), 𝜎𝜎!"

!(!), 𝜎𝜎!"
!(!), 𝜎𝜎!"

!(!), and 𝜎𝜎!
!(!), we can estimate various posterior distributions, 
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s2( ) , we can estimate various posterior distributions, on which D study will be conducted. 

Examples (G study and D study)

With the models and algorithms in the previous section, posterior distributions of variances of random 

effects can be estimated. Using these estimations, posterior analyses can be conducted. In this section, two 

hypothetical data sets generated by computer simulations of one-facet         and two-facet 	 	    

        designs were analyzed (G study), and posterior distributions of relative generalizability coeffi-

cients were estimated for various designs (D study).
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on which D study will be conducted.  

 

Examples (G study and D study) 

With the models and algorithms in the previous section, posterior distributions 

of variances of random effects can be estimated. Using these estimations, posterior 

analyses can be conducted. In this section, two hypothetical data sets generated by 

computer simulations of one-facet (𝑛𝑛! = 5) and two-facet (𝑛𝑛! = 5, 𝑛𝑛! = 3) designs 

were analyzed (G study), and posterior distributions of relative generalizability 

coefficients were estimated for various designs (D study). 

One-facet design 

 Table 1 shows hypothetical data of a one-facet design. To estimate posterior 

distributions of variances 𝜎𝜎!!, 𝜎𝜎!!, and 𝜎𝜎!! in model (3), the algorithm of the previous 

section was applied. Initial values of variances were estimated by the classical method 

of ANOVA (Kirk, 1995; Kutner, Nachtsheim, Neter, and Li, 2005; Myers and Well, 

2003). If the classical estimation of 𝜎𝜎! is not positive (Cardinet, Johnson, and Pini, 

2010), 𝜎𝜎! is set at 0.01. Using these estimates of variances, say 𝜎𝜎!, parameters of 

𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎, 𝑏𝑏  were set as follows: 

𝑎𝑎 = 3+
1
25 ,        𝑏𝑏 = 𝜎𝜎! 4+

1
25 . 

Tbl.1 
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One-facet design

Table 1.Hypothetical data set of one-facet design.
Targtet Item1 Item2 Item3 Item4 Item5

1 6 5 6 5 3
2 4 4 4 5 6
3 3 1 1 5 3
4 8 5 8 7 5
5 6 2 5 5 3
6 1 3 1 2 2
7 3 2 2 3 4
8 4 3 4 6 3
9 1 3 2 3 2

10 5 3 4 3 3
11 6 4 6 8 6
12 3 3 4 2 3
13 7 3 5 3 4
14 9 6 7 8 8
15 8 3 5 4 4
16 3 4 6 2 3
17 3 2 5 2 4
18 4 1 4 1 4
19 5 6 8 6 5
20 5 4 3 5 7
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Li, 2005; Myers and Well, 2003). If the classical estimation of     is not positive (Cardinet, Johnson, and 

Pini, 2010),    is set at 0.01. Using these estimates of variances, say   , parameters of 

were set as follows:
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Figure 1. 95% central intervals (CIs) of relative generalizability coefficients for 

various 𝑛𝑛!s. 
 

Two-facet design

 Table 2 shows hypothetical data of a two-facet design. To estimate posterior distributions of vari-

ances in model (8), the algorithm of the previous section was applied. The procedure was basically the 

same as that in the previous section, except that model (7) was used instead of (2). The length of the main 

MCMC was 10000, the same length as in the one-facet design. Since initial values of the main MCMC 

were set as means of the adaptive stage, no burn-in was used, and the number of samples from the posterior 

distribution was 10000. Sample values      s of relative generalizability coeffi cient were calculated as 

follows:
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Discussion

The framework of generalizability theory, G study and D study, corresponds well to that of Bayesian 

analysis, setting up a model, conditioning on a data, and evaluation. To apply the Bayesian approach, this 

study employed stochastic models, in that random effects are represented as hierarchical prior distributions. 

Decompositions of variances are derived using well-known rules of probability theory. With these decom-

positions, generalizability coefficients can be calculated.

The hypothetical data sets of one-facet and two-facet designs were analyzed according to the pro-

posed algorithms. To conduct Bayesian analysis by the proposed models, Metropolis-within-Gibbs algo-

rithms were employed. Posterior distributions of variances were successfully estimated, using inverse gam-

ma distributions as prior distributions for variances. Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin 

(2014) state that in most problems, using a weakly informative prior distribution that includes a small 

amount of real-world information is preferable. In this study, parameters of the inverse-gamma distributions 

were set using estimates by ANOVA. With sample values from posterior distributions of variances, posteri-

or distributions of relative generalizability coefficients were estimated, and 95% CIs were derived. 95% CIs 

provided more information than point estimations, i.e., medians. It should be emphasized that although es-

timates of variances by ANOVA can be negative (Cardinet, Johnson, and Pini, 2010), the proposed methods 

always provide nonnegative estimates by virtue of prior distributions.

 In this study, only relative generalizability coefficients were treated. Obviously, an absolute gen-

eralizability coefficient can be estimated in the same way as a relative generalizability coefficient
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