CnTAB 界面活性剤水溶液の CMC 検討

小澤あつみ, 今井 元
日本女子大学理学部数物科学科

(2009年1月15日受理)

要旨 奥化アルキルトリメチルアンモニウム (CnTAB) 界面活性剤水溶液の表面張力と粘性率を測定して臨界ミセル形成濃度 (CMC) を求めた。表面張力は Wilhelmy 法測定を用いた。また表面張力波を人工的に強起させる表面波測定系を組み立て、これにより波の減衰を測定し粘性率を求めた。これら 2 つの測定から CMC を決定し硫水基の違いによる CMC の違いを検討した。またこのとき水溶液中に形成されるミセルに取込まれる不純物の量について考察した。

キーワード：臨界ミセル形成濃度 (CMC), 界面活性剤, 不純物, 表面張力, 粘性

1. はじめに

界面活性剤は様々な用途に使用されている。これは界面活性剤分子が両親媒性分子であることに起因する。界面活性剤分子が親水基と疏水基を併せ持つため、水中に溶けた界面活性剤分子は疏水基を上に向けて液体表面に吸着する。濃度が高くなると表面に吸着できなくなると液体中ではミセルと呼ばれる球状の分子集合体を形成する。このミセルを形成する濃度が CMC (臨界ミセル形成濃度) である。ミセルは汚れた分子を吸収することができる。洗剤として界面活性剤を使用する場合にはこの数値を把握することが重要である。界面活性剤の CMC 測定には電気泳動法1-3), 電気泳動法4), 蛍光プローブ測定5-8), Wilhelmy 法9)や光散乱法などが知られている。代表的な界面活性剤であるデシル硫酸ナトリウム (SDS) でもこれらの測定法で CMC 測定が行われている1-8)。これまでの研究で CMC を決定することはできたが、そのとき溶液中で何かおきているかミセル形成後のメカニズムについてはまだ不明な点が多い。

そこで我々は新たな測定系を組み立て、CMC を検討しそのメカニズムについて考察した。

2. 測定

2.1. 試料

本研究で用いた界面活性剤は CnTAB [CH₃(CH₂)ₙ₋₁N(CH₃)₄Br] である。CnTAB の疏水基は 1 個のメチル基と n–1 個のメチレン基で構成される。今回用いた CnTAB は n = 8, 10, 14, 16 である。C₈TAB と C₁₄TAB を比較すると疏水基の炭素数では C₁₄TAB は C₈TAB の 2 倍である。CnTAB は n の違いにより硫水基が異なるが親水基はまったく同一ものである。

2.2. 測定系

CMC の静的測定法としては代表的な Wilhelmy 法を用いた。Wilhelmy 法は電子天秤の床下秤量法によるものである7)。詳細な方法はここでは省略する。今回我々が独自に組み立てたユニークな測定法が表面張力波測定系である。ミセル形成は浮遊または表面などに吸着して
いる活性剤分子とミセル中の分子が絶えず分子交換を行っている。このため CMC 計測には液体表面近傍の現象を捉える測定系が有効と考えた。液体表面は表面張力と重力の作用で平衡を保っている。表面張力は振幅が波長に比べて小さい波のことを液体内部方向には指数関数的に減衰する。表面張力波はその中でもさらに波長の小さい波である。水の場合、波長 1.5 cm 以下の波は表面張力に元力として伝播する。1.5 cm 以上では重力が無視できなくなるため振波と呼ばれる。ここではこのような表面張力波を表面波と呼ぶことにする。

この条件下の波動方程式は横波の波動方程式と粘性の項を用いて次式で与えられる。

\[
\frac{\partial^2 y}{\partial x^2} + \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} = \eta \frac{\partial y}{\partial x} + \frac{\partial^2 y}{\partial t^2} \tag{1}
\]

ここで \(c\) は波の伝搬速度で \(c = \sqrt{S/\rho}\) 、ただし、\(\rho\) は密度である。また、\(S\) は張力で \(S = a \times \lambda\)、\(a\) は表面張力、\(\lambda\) は波長、\(\eta\) は粘性率、\(a\) は定数である。\(y = ye^{i(\omega t - kx)}\) のもとにこの式を解くと

\[
y(t) = e^{-\omega \frac{c^2 \eta}{2S} t + \frac{i \eta c}{2S} x} \tag{2}
\]

で表される。ただし、

\[A = \sqrt{(a \eta c^2/\omega)^2 + 4k^2 \omega^2}/2, k \text{ は波数である。}

(2) 式の右辺の実部が減衰項であるから、波の伝播距離による減衰 \(D\) は

\[
D = -\frac{\eta c^2}{2S} t = -\frac{\eta c}{2S} x \tag{3}
\]

となる。したがって波の減衰がわかれば表面張力と (3) 式を用いて表面層の粘性率を求めることができる。表面波観測の測定系を Fig. 1 に示す。発振器に接続したスピーカーにプラスチック板を取り付け、これを液体に接触させ表面波を興起させた。本研究では圧電素子を用いて振幅波の超音波を測定した。波の検出にはレーザ光を用いた。液面にレーザ光を垂直入射させ液面からの反射光を検出した。レーザ光の入射位置は固定し、X ステージ上に載せた試料容器を可動式とした。容器を可動させながら反射光を測定することにより伝播距離による波の振幅が求められる。表面張力や粘性率などの物性値が既知の純水を用いて測定を行った結果、減衰 0.006、伝播速度 28 cm/s、粘性率 1.0 × 10^{-4} Pa・s となり装置の有効性を確認してきたので、CMC 水溶液での観測を行った。

3. 結果

Wilhelmy 法を用いて測定した表面張力と濃度の関係を Fig. 2 に示す。表面張力は濃度が高くなるにつれて減少し、最大値を示す。表面張力が零するには、破水基を持つ活性剤分子が表面へ吸着し表面エネルギーを減少させるからである。このため濃度が高くなるにつれて吸着分子が増加して表面張力が下がる。可溶性の界面活性剤ではあるが、表面への吸着量が飽和値に達すると表面に吸着できない分子はバルク中に破水基を内側に向けてミセルを形成する。このときの濃度が CMC である。CMC 以上の濃度域では表面への吸着量は一定であるため表面張力は一定となる。濃度増加成分のミセル形成に関与する。また表面張力の値が CMC で最小値を持つのは不純物を含むの原因である。表面は

![Fig. 2. A few representative plots of surface tension vs. log [concentration]. CmTAB are equal to CnTAB (●), CmTAB (△), CnTAB (○), CmTAB (□).](image-url)

![Fig. 3. Variation of cmc of CmTAB with carbon number. CmTAB are equal to measurement values (●), literature ones (□).](image-url)
いずれも同じであるためこの原因は炭水基が影響していると考えられる。炭水基は炭素結合で構成されているので、炭素原子の大きさ 1.27 Å を用いて炭水基長を概算し CMC との関係をプロットしたのが Fig. 3 である。CMC は炭水基が長くなるほど急激に低濃度側にシフトしている。結果は文献値とほぼ一致した

Fig. 4 は濃度 1 mM/l の C₄TAB 界面活性剤水溶液表面での表面波の減衰波形である。回の勾配より減衰率 0.02 が得られた。また前報周波数 50Hz より、このときの伝搬速度は 22 cm/s。張力は Wilhelmy 法による表面張力値より求めた。これらの値と (3) 式を用いると、このときの表面層の粘性率は 1.8 × 10⁻² Pa・s となった。このような物性値の研究報告は他にはないが、明らかに水の値よりも大きくなることがわかった。Fig. 5 は CnTAB 界面活性剤水溶液の粘性率と濃度の関係を示す。横軸は CMC の値で規格化した。我々は、粘性率は濃度とともに増加し CMC 付近で変曲点を持ち、さらに増加すると考えた。ところが結果は横軸の CMC 付近で最小となった。表面波の周期は 2.0 ms である。これは分子の拡散による速度μs よりも充分に遅い時間がかかる、拡散による分子移動は観察でき、波の伝搬による移動である。 (3) 式より粘性率を決定する波の減衰率、表面張力、伝搬速度の 3 つの因子である。粘性率が最小値に至るまでの低濃度域では、表面張力・伝搬速度の測定値は共に減少した。 (3) 式から考えすれば増加するはずである。したがって粘性率が減少するのは第 4 の要因が存在すると推察される。活性剤分子は両親媒性分子であるために CMC 以下の濃度域ではすべての分子が表面に吸着するが、イオン性界面活性剤であるために活性剤分子間反動あるいは反イオンの反発力により粘性抑制がおきるのではないかと考えられる。また粘性率の最小値が CMC よりも低濃度側にわずかにシフトしているのは、この分子の反発力による表面近傍に集まっている分子がミセルを形成し始めるためと思われる。一方 CMC 付近からの増加は、表面近傍に活性剤分子の単体だけではなくミセルも存在するため粘性率が上がったと思われる。

次に CnTAB の親水基は同じであるが CMC が異なることについて次のように考察した。CnTAB がミセルを形成しているときに、仮に液体表面 10 cm² に活性剤分子が全部浮いた場合、分子 1 個あたりの占有面積の半径は Table 1 のようになる。C₄TAB で 0.0138A、C₄TAB では 0.460A となる。また炭素数はアルキル基からなるので炭素数で概算することができる。親水基は同じなので炭水基が長くなるほどミセルも生成するであろうと考えれば親水基と碳水基の半径と角度が求められる。Fig. 6 にその模式図を示す。C₄TAB ではほぼ垂直で 89.9°、C₄TAB では 88.7° で n が大きくなるほど角度は小さくなる。液面に吸着した活性剤分子は炭水基が長くなるほど傾斜角が小さくなり液面にたわまった状態に近づき、疎水分子との距離が大きくなる。1 分子あたりの占有面積が大きくなるので吸着量が少なくなる。したがって濃度が低くてもパルク中にミセルを形成することができる。以上のことを CnTAB 界面活性剤では炭水基が長くなるほど CMC の値が低濃度側にシフトすると考えられる。

ところで、表面張力の濃度依存性の測定では我々の結果は CMC 付近に最小値を持つ結果となった。これについては試料作成過程に不純物が含まれているとこのよう
な結果となるという報告がある7,8,9。Linら9)はデシル
アルカントリム（SDS）界面活性剤で最小値をもつ濃
度依存性が測定されている。この不純物は SDS 作成過
程での加水分解によるデシルアルコールによるもので
ミセルができるとこれに取り込まれると述べている。ミ
セルサイズは硫水基長から考えて nm オーダーであるこ
とが予想されることから、これに取り込まれる不純物は原
子サイズであるとされる9,10,11。しかしその量までに
は触れていない。この取り込みが可能ならば、例えば有
機半導体におけるドナー性の不純物であるポリナイ
化によりナノサイズの結晶作成などの活用も示唆でき
る。このような観点からミセルに取り込まれる不純物量
を概算した。Table 2 に示す。Fig. 2 で示す破壊のよう
に表面張力は CMC 以上ではわずかに高くなるがすくに
一定となった。そこで表面張力最小値での濃度と表面張
力が一定となったところの濃度との差：ΔC を測定よ
り求めた。一見のミセルを形成する CnTAB の分子数が
わかっているので11,この ΔC 中に存在するミセルの個数
を概算し CnTAB を基準とすると、その比率は n が増え
るほど減少する。不純物の取込み量は ΔC 中のミセル個
数に依存し、さらにミセル体積に比例すると考え CnTAB
を基準とした相対値で求めた。Table 2 の①は硫水基の
長さの比率からミセル 1 個の体積比率を求めて算出した
結果である。②は親水基 1 個の占有面積からミセル 1
個の表面積を求めてこれより体積比率を算出した結果で
ある。硫水基の長さから求めた場合と親水基の占有面積
から求めた場合では n に対する取込み量の傾向は逆の
結果となった。我々は硫水基長が長くなるとミセル中へ
の不純物の取込み量が増えると予想していたが、顕著な
n 依存性は見られないようである。

4. ま と め

我々は、親水基は同じであるが硫水基が異なる CnTAB
界面活性剤溶液を用いて CMC について測定した。表
面波測定というユニークな測定系を組み、表面波観測か
ら表面層の粘弹性を求めた。その結果、粘性率は水の値
よりも大きく、CMC で最小小になることがわかった。こ
れはミセルができていない濃度域では活性剤分子同士の
反発力で粘性が減少したと考えられる。しかしこの点に
ついては更に検討が必要と考えている。また CMC が異
なる原因については、活性剤分子が液体表面に吸着する
ときに硫水基の傾斜角から説明することができた。また
表面張力が CMC で最小値をもつのが不纯物が含まれて
いるため、この不純物の取込み量を概算した。顕著な硫水基の長さ依存性は確認できなかったが、これら
の結果は CnTAB を母材としたイオンドープによる有機
薄膜作成への応用等に有効と考えている。

謝辞：本研究の実験は中込篤子（現在：神奈川県中
学教員）と羽田野栄（現在：東芝勤務）によるもので深謝いたします。

参考文献
9) 今井 功：液体力学．岩波書店，1993。
10) 小澤あつ緒 他3名：2003年度第51回応用物理学会学術講演会。
11) M.J. ローソン：界面活性剤と界面現象．フレンガルズジャー
ナル社，1995。
12) 野村善彦 他：液体および溶液の音波性．名古屋大学出版
会，1994.
A Study of the Critical Micelle Concentration of CnTAB Surfactant Solutions

Atsumi Ozawa and Hajime Imai
Department of Mathematical and Physical Science, Faculty of Science, Japan Women's University

(Received: January 15, 2009)

Abstract: The critical micelle concentrations (CMC) of alkyl trimethyl ammonium bromide (CnTAB) solutions were measured by using Wilhelmy plate method. The viscosities have been obtained by the surface tension waves. We discussed the different of hydrophobic groups and the impurity that solubilized in the micelles in range of CMC.

Key words: Critical micelle concentration, surfactant solution, impurity, surface tension, viscosity